给你一个 n
个节点的 有向图 ,节点编号为 0
到 n - 1
,每个节点 至多 有一条出边。
有向图用大小为 n
下标从 0 开始的数组 edges
表示,表示节点 i
有一条有向边指向 edges[i]
。如果节点 i
没有出边,那么 edges[i] == -1
。
同时给你两个节点 node1
和 node2
。
请你返回一个从 node1
和 node2
都能到达节点的编号,使节点 node1
和节点 node2
到这个节点的距离 较大值最小化。如果有多个答案,请返回 最小 的节点编号。如果答案不存在,返回 -1
。
注意 edges
可能包含环。
示例 1:
输入:edges = [2,2,3,-1], node1 = 0, node2 = 1 输出:2 解释:从节点 0 到节点 2 的距离为 1 ,从节点 1 到节点 2 的距离为 1 。 两个距离的较大值为 1 。我们无法得到一个比 1 更小的较大值,所以我们返回节点 2 。
示例 2:
输入:edges = [1,2,-1], node1 = 0, node2 = 2 输出:2 解释:节点 0 到节点 2 的距离为 2 ,节点 2 到它自己的距离为 0 。 两个距离的较大值为 2 。我们无法得到一个比 2 更小的较大值,所以我们返回节点 2 。
提示:
n == edges.length
2 <= n <= 105
-1 <= edges[i] < n
edges[i] != i
0 <= node1, node2 < n