现有一棵由 n
个节点组成的无向树,节点编号从 0
到 n - 1
,共有 n - 1
条边。
给你一个二维整数数组 edges
,长度为 n - 1
,其中 edges[i] = [ai, bi]
表示树中节点 ai
和 bi
之间存在一条边。另给你一个整数数组 restricted
表示 受限 节点。
在不访问受限节点的前提下,返回你可以从节点 0
到达的 最多 节点数目。
注意,节点 0
不 会标记为受限节点。
示例 1:
输入:n = 7, edges = [[0,1],[1,2],[3,1],[4,0],[0,5],[5,6]], restricted = [4,5] 输出:4 解释:上图所示正是这棵树。 在不访问受限节点的前提下,只有节点 [0,1,2,3] 可以从节点 0 到达。
示例 2:
输入:n = 7, edges = [[0,1],[0,2],[0,5],[0,4],[3,2],[6,5]], restricted = [4,2,1] 输出:3 解释:上图所示正是这棵树。 在不访问受限节点的前提下,只有节点 [0,5,6] 可以从节点 0 到达。
提示:
2 <= n <= 105
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges
表示一棵有效的树1 <= restricted.length < n
1 <= restricted[i] < n
restricted
中的所有值 互不相同