{ "data": { "question": { "questionId": "2213", "questionFrontendId": "2092", "boundTopicId": null, "title": "Find All People With Secret", "titleSlug": "find-all-people-with-secret", "content": "
You are given an integer n
indicating there are n
people numbered from 0
to n - 1
. You are also given a 0-indexed 2D integer array meetings
where meetings[i] = [xi, yi, timei]
indicates that person xi
and person yi
have a meeting at timei
. A person may attend multiple meetings at the same time. Finally, you are given an integer firstPerson
.
Person 0
has a secret and initially shares the secret with a person firstPerson
at time 0
. This secret is then shared every time a meeting takes place with a person that has the secret. More formally, for every meeting, if a person xi
has the secret at timei
, then they will share the secret with person yi
, and vice versa.
The secrets are shared instantaneously. That is, a person may receive the secret and share it with people in other meetings within the same time frame.
\n\nReturn a list of all the people that have the secret after all the meetings have taken place. You may return the answer in any order.
\n\n\n
Example 1:
\n\n\nInput: n = 6, meetings = [[1,2,5],[2,3,8],[1,5,10]], firstPerson = 1\nOutput: [0,1,2,3,5]\nExplanation:\nAt time 0, person 0 shares the secret with person 1.\nAt time 5, person 1 shares the secret with person 2.\nAt time 8, person 2 shares the secret with person 3.\nAt time 10, person 1 shares the secret with person 5.\nThus, people 0, 1, 2, 3, and 5 know the secret after all the meetings.\n\n\n
Example 2:
\n\n\nInput: n = 4, meetings = [[3,1,3],[1,2,2],[0,3,3]], firstPerson = 3\nOutput: [0,1,3]\nExplanation:\nAt time 0, person 0 shares the secret with person 3.\nAt time 2, neither person 1 nor person 2 know the secret.\nAt time 3, person 3 shares the secret with person 0 and person 1.\nThus, people 0, 1, and 3 know the secret after all the meetings.\n\n\n
Example 3:
\n\n\nInput: n = 5, meetings = [[3,4,2],[1,2,1],[2,3,1]], firstPerson = 1\nOutput: [0,1,2,3,4]\nExplanation:\nAt time 0, person 0 shares the secret with person 1.\nAt time 1, person 1 shares the secret with person 2, and person 2 shares the secret with person 3.\nNote that person 2 can share the secret at the same time as receiving it.\nAt time 2, person 3 shares the secret with person 4.\nThus, people 0, 1, 2, 3, and 4 know the secret after all the meetings.\n\n\n
\n
Constraints:
\n\n2 <= n <= 105
1 <= meetings.length <= 105
meetings[i].length == 3
0 <= xi, yi <= n - 1
xi != yi
1 <= timei <= 105
1 <= firstPerson <= n - 1
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.