给你一个 n
个节点的树(也就是一个无环连通无向图),节点编号从 0
到 n - 1
,且恰好有 n - 1
条边,每个节点有一个值。树的 根节点 为 0 号点。
给你一个整数数组 nums
和一个二维数组 edges
来表示这棵树。nums[i]
表示第 i
个点的值,edges[j] = [uj, vj]
表示节点 uj
和节点 vj
在树中有一条边。
当 gcd(x, y) == 1
,我们称两个数 x
和 y
是 互质的 ,其中 gcd(x, y)
是 x
和 y
的 最大公约数 。
从节点 i
到 根 最短路径上的点都是节点 i
的祖先节点。一个节点 不是 它自己的祖先节点。
请你返回一个大小为 n
的数组 ans
,其中 ans[i]
是离节点 i
最近的祖先节点且满足 nums[i]
和 nums[ans[i]]
是 互质的 ,如果不存在这样的祖先节点,ans[i]
为 -1
。
示例 1:
输入:nums = [2,3,3,2], edges = [[0,1],[1,2],[1,3]] 输出:[-1,0,0,1] 解释:上图中,每个节点的值在括号中表示。 - 节点 0 没有互质祖先。 - 节点 1 只有一个祖先节点 0 。它们的值是互质的(gcd(2,3) == 1)。 - 节点 2 有两个祖先节点,分别是节点 1 和节点 0 。节点 1 的值与它的值不是互质的(gcd(3,3) == 3)但节点 0 的值是互质的(gcd(2,3) == 1),所以节点 0 是最近的符合要求的祖先节点。 - 节点 3 有两个祖先节点,分别是节点 1 和节点 0 。它与节点 1 互质(gcd(3,2) == 1),所以节点 1 是离它最近的符合要求的祖先节点。
示例 2:
输入:nums = [5,6,10,2,3,6,15], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]] 输出:[-1,0,-1,0,0,0,-1]
提示:
nums.length == n
1 <= nums[i] <= 50
1 <= n <= 105
edges.length == n - 1
edges[j].length == 2
0 <= uj, vj < n
uj != vj