{ "data": { "question": { "questionId": "3900", "questionFrontendId": "3585", "categoryTitle": "Algorithms", "boundTopicId": 3699823, "title": "Find Weighted Median Node in Tree", "titleSlug": "find-weighted-median-node-in-tree", "content": "
You are given an integer n
and an undirected, weighted tree rooted at node 0 with n
nodes numbered from 0 to n - 1
. This is represented by a 2D array edges
of length n - 1
, where edges[i] = [ui, vi, wi]
indicates an edge from node ui
to vi
with weight wi
.
The weighted median node is defined as the first node x
on the path from ui
to vi
such that the sum of edge weights from ui
to x
is greater than or equal to half of the total path weight.
You are given a 2D integer array queries
. For each queries[j] = [uj, vj]
, determine the weighted median node along the path from uj
to vj
.
Return an array ans
, where ans[j]
is the node index of the weighted median for queries[j]
.
\n
Example 1:
\n\nInput: n = 2, edges = [[0,1,7]], queries = [[1,0],[0,1]]
\n\nOutput: [0,1]
\n\nExplanation:
\n\nQuery | \n\t\t\tPath | \n\t\t\tEdge \n\t\t\tWeights | \n\t\t\tTotal \n\t\t\tPath \n\t\t\tWeight | \n\t\t\tHalf | \n\t\t\tExplanation | \n\t\t\tAnswer | \n\t\t
---|---|---|---|---|---|---|
[1, 0] | \n\t\t\t1 → 0 | \n\t\t\t[7] | \n\t\t\t7 | \n\t\t\t3.5 | \n\t\t\tSum from 1 → 0 = 7 >= 3.5 , median is node 0. | \n\t\t\t0 | \n\t\t
[0, 1] | \n\t\t\t0 → 1 | \n\t\t\t[7] | \n\t\t\t7 | \n\t\t\t3.5 | \n\t\t\tSum from 0 → 1 = 7 >= 3.5 , median is node 1. | \n\t\t\t1 | \n\t\t
Example 2:
\n\nInput: n = 3, edges = [[0,1,2],[2,0,4]], queries = [[0,1],[2,0],[1,2]]
\n\nOutput: [1,0,2]
\n\nExplanation:
\n\nQuery | \n\t\t\tPath | \n\t\t\tEdge \n\t\t\tWeights | \n\t\t\tTotal \n\t\t\tPath \n\t\t\tWeight | \n\t\t\tHalf | \n\t\t\tExplanation | \n\t\t\tAnswer | \n\t\t
---|---|---|---|---|---|---|
[0, 1] | \n\t\t\t0 → 1 | \n\t\t\t[2] | \n\t\t\t2 | \n\t\t\t1 | \n\t\t\tSum from 0 → 1 = 2 >= 1 , median is node 1. | \n\t\t\t1 | \n\t\t
[2, 0] | \n\t\t\t2 → 0 | \n\t\t\t[4] | \n\t\t\t4 | \n\t\t\t2 | \n\t\t\tSum from 2 → 0 = 4 >= 2 , median is node 0. | \n\t\t\t0 | \n\t\t
[1, 2] | \n\t\t\t1 → 0 → 2 | \n\t\t\t[2, 4] | \n\t\t\t6 | \n\t\t\t3 | \n\t\t\tSum from 1 → 0 = 2 < 3 .\n\t\t\tSum from 1 → 2 = 2 + 4 = 6 >= 3 , median is node 2. | \n\t\t\t2 | \n\t\t
Example 3:
\n\nInput: n = 5, edges = [[0,1,2],[0,2,5],[1,3,1],[2,4,3]], queries = [[3,4],[1,2]]
\n\nOutput: [2,2]
\n\nExplanation:
\n\nQuery | \n\t\t\tPath | \n\t\t\tEdge \n\t\t\tWeights | \n\t\t\tTotal \n\t\t\tPath \n\t\t\tWeight | \n\t\t\tHalf | \n\t\t\tExplanation | \n\t\t\tAnswer | \n\t\t
---|---|---|---|---|---|---|
[3, 4] | \n\t\t\t3 → 1 → 0 → 2 → 4 | \n\t\t\t[1, 2, 5, 3] | \n\t\t\t11 | \n\t\t\t5.5 | \n\t\t\tSum from 3 → 1 = 1 < 5.5 .\n\t\t\tSum from 3 → 0 = 1 + 2 = 3 < 5.5 .\n\t\t\tSum from 3 → 2 = 1 + 2 + 5 = 8 >= 5.5 , median is node 2. | \n\t\t\t2 | \n\t\t
[1, 2] | \n\t\t\t1 → 0 → 2 | \n\t\t\t[2, 5] | \n\t\t\t7 | \n\t\t\t3.5 | \n\t\t\t\n\t\t\t Sum from | \n\t\t\t2 | \n\t\t
\n
Constraints:
\n\n2 <= n <= 105
edges.length == n - 1
edges[i] == [ui, vi, wi]
0 <= ui, vi < n
1 <= wi <= 109
1 <= queries.length <= 105
queries[j] == [uj, vj]
0 <= uj, vj < n
edges
represents a valid tree.给你一个整数 n
,以及一棵 无向带权 树,根节点为节点 0,树中共有 n
个节点,编号从 0
到 n - 1
。该树由一个长度为 n - 1
的二维数组 edges
表示,其中 edges[i] = [ui, vi, wi]
表示存在一条从节点 ui
到 vi
的边,权重为 wi
。
带权中位节点 定义为从 ui
到 vi
路径上的 第一个 节点 x
,使得从 ui
到 x
的边权之和 大于等于 该路径总权值和的一半。
给你一个二维整数数组 queries
。对于每个 queries[j] = [uj, vj]
,求出从 uj
到 vj
路径上的带权中位节点。
返回一个数组 ans
,其中 ans[j]
表示查询 queries[j]
的带权中位节点编号。
\n\n
示例 1:
\n\n输入: n = 2, edges = [[0,1,7]], queries = [[1,0],[0,1]]
\n\n输出: [0,1]
\n\n解释:
\n\n查询 | \n\t\t\t路径 | \n\t\t\t边权 | \n\t\t\t总路径权值和 | \n\t\t\t一半 | \n\t\t\t解释 | \n\t\t\t答案 | \n\t\t
---|---|---|---|---|---|---|
[1, 0] | \n\t\t\t1 → 0 | \n\t\t\t[7] | \n\t\t\t7 | \n\t\t\t3.5 | \n\t\t\t从 1 → 0 的权重和为 7 >= 3.5,中位节点是 0。 | \n\t\t\t0 | \n\t\t
[0, 1] | \n\t\t\t0 → 1 | \n\t\t\t[7] | \n\t\t\t7 | \n\t\t\t3.5 | \n\t\t\t从 0 → 1 的权重和为 7 >= 3.5,中位节点是 1。 | \n\t\t\t1 | \n\t\t
\n\n
示例 2:
\n\n输入: n = 3, edges = [[0,1,2],[2,0,4]], queries = [[0,1],[2,0],[1,2]]
\n\n输出: [1,0,2]
\n\n解释:
\n\n查询 | \n\t\t\t路径 | \n\t\t\t边权 | \n\t\t\t总路径权值和 | \n\t\t\t一半 | \n\t\t\t解释 | \n\t\t\t答案 | \n\t\t
---|---|---|---|---|---|---|
[0, 1] | \n\t\t\t0 → 1 | \n\t\t\t[2] | \n\t\t\t2 | \n\t\t\t1 | \n\t\t\t从 0 → 1 的权值和为 2 >= 1,中位节点是 1。 | \n\t\t\t1 | \n\t\t
[2, 0] | \n\t\t\t2 → 0 | \n\t\t\t[4] | \n\t\t\t4 | \n\t\t\t2 | \n\t\t\t从 2 → 0 的权值和为 4 >= 2,中位节点是 0。 | \n\t\t\t0 | \n\t\t
[1, 2] | \n\t\t\t1 → 0 → 2 | \n\t\t\t[2, 4] | \n\t\t\t6 | \n\t\t\t3 | \n\t\t\t从 1 → 0 = 2 < 3 ,\n\t\t\t从 1 → 2 = 6 >= 3 ,中位节点是 2。 | \n\t\t\t2 | \n\t\t
\n\n
示例 3:
\n\n输入: n = 5, edges = [[0,1,2],[0,2,5],[1,3,1],[2,4,3]], queries = [[3,4],[1,2]]
\n\n输出: [2,2]
\n\n解释:
\n\n查询 | \n\t\t\t路径 | \n\t\t\t边权 | \n\t\t\t总路径权值和 | \n\t\t\t一半 | \n\t\t\t解释 | \n\t\t\t答案 | \n\t\t
---|---|---|---|---|---|---|
[3, 4] | \n\t\t\t3 → 1 → 0 → 2 → 4 | \n\t\t\t[1, 2, 5, 3] | \n\t\t\t11 | \n\t\t\t5.5 | \n\t\t\t从 3 → 1 = 1 < 5.5 ,\n\t\t\t从 3 → 0 = 3 < 5.5 ,\n\t\t\t从 3 → 2 = 8 >= 5.5 ,中位节点是 2。 | \n\t\t\t2 | \n\t\t
[1, 2] | \n\t\t\t1 → 0 → 2 | \n\t\t\t[2, 5] | \n\t\t\t7 | \n\t\t\t3.5 | \n\t\t\t从 1 → 0 = 2 < 3.5 ,\n\t\t\t从 1 → 2 = 7 >= 3.5 ,中位节点是 2。 | \n\t\t\t2 | \n\t\t
\n\n
提示:
\n\n2 <= n <= 105
edges.length == n - 1
edges[i] == [ui, vi, wi]
0 <= ui, vi < n
1 <= wi <= 109
1 <= queries.length <= 105
queries[j] == [uj, vj]
0 <= uj, vj < n
edges
表示一棵合法的树。u
and v
, with lowest common ancestor l
and total path weight tot
.",
"If the median lies on the path from u
up to l
: find the first node where 2 * sum >= tot
(equivalently, the last where 2 * sum < tot
and move one node above).",
"Otherwise, it lies on the path from v
up to l
: use the same 2 * sum >= tot
criterion as you climb.",
"In both cases, binary lifting with sparse tables lets you jump by powers of two while tracking cumulative weights to locate the weighted median in O(log n)"
],
"solution": null,
"status": null,
"sampleTestCase": "2\n[[0,1,7]]\n[[1,0],[0,1]]",
"metaData": "{\n \"name\": \"findMedian\",\n \"params\": [\n {\n \"name\": \"n\",\n \"type\": \"integer\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"edges\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"queries\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"envInfo": "{\"cpp\":[\"C++\",\"\\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1aarray<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u6ce8\\u610f Python 2.7 \\u5df2\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"c\":[\"C\",\" \\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u60f3\\u4f7f\\u7528\\u54c8\\u5e0c\\u8868\\u8fd0\\u7b97, \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 uthash<\\/a>\\u3002 \\\"uthash.h\\\"\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5bfc\\u5165\\u3002\\u8bf7\\u770b\\u5982\\u4e0b\\u793a\\u4f8b:<\\/p>\\r\\n\\r\\n 1. \\u5f80\\u54c8\\u5e0c\\u8868\\u4e2d\\u6dfb\\u52a0\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n 2. \\u5728\\u54c8\\u5e0c\\u8868\\u4e2d\\u67e5\\u627e\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n 3. \\u4ece\\u54c8\\u5e0c\\u8868\\u4e2d\\u5220\\u9664\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n C# 13<\\/a> \\u8fd0\\u884c\\u5728 .NET 9 \\u4e0a<\\/p>\"],\"javascript\":[\"JavaScript\",\" \\u7248\\u672c\\uff1a \\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@6.3.2<\\/a>\\uff0c datastructures-js\\/queue@4.2.3<\\/a> \\u4ee5\\u53ca datastructures-js\\/deque@1.0.4<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\" \\u4f7f\\u7528 \\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\" \\u7248\\u672c\\uff1a \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 swift-algorithms 1.2.0<\\/a>\\uff0cswift-collections 1.1.4<\\/a> \\u548c swift-numerics 1.0.2<\\/a><\\/p>\\r\\n\\r\\n \\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\" \\u7248\\u672c\\uff1a \\u652f\\u6301 https:\\/\\/pkg.go.dev\\/github.com\\/emirpasic\\/gods@v1.18.1<\\/a> \\u548c https:\\/\\/pkg.go.dev\\/github.com\\/emirpasic\\/gods\\/v2@v2.0.0-alpha<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982array<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\" \\u7248\\u672c\\uff1a \\u7248\\u672c\\uff1a \\u7248\\u672c\\uff1a \\u652f\\u6301 crates.io \\u7684 rand<\\/a>\\u3001regex<\\/a> \\u548c itertools<\\/a><\\/p>\"],\"php\":[\"PHP\",\" With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\" TypeScript 5.7.3<\\/p>\\r\\n\\r\\n Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2024<\\/p>\\r\\n\\r\\n lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@6.3.2<\\/a>\\uff0c datastructures-js\\/queue@4.2.3<\\/a> \\u4ee5\\u53ca datastructures-js\\/deque@1.0.4<\\/a>\\u3002<\\/p>\"],\"racket\":[\"Racket\",\" Racket CS<\\/a> v8.15<\\/p>\\r\\n\\r\\n \\u4f7f\\u7528 #lang racket<\\/p>\\r\\n\\r\\n \\u5df2\\u9884\\u5148 (require data\\/gvector data\\/queue data\\/order data\\/heap). \\u82e5\\u9700\\u4f7f\\u7528\\u5176\\u5b83\\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u53ef\\u81ea\\u884c require\\u3002<\\/p>\"],\"erlang\":[\"Erlang\",\"Erlang\\/OTP 26\"],\"elixir\":[\"Elixir\",\"Elixir 1.17 with Erlang\\/OTP 26\"],\"dart\":[\"Dart\",\" Dart 3.2\\u3002\\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 collection<\\/a> \\u5305<\\/p>\\r\\n\\r\\n \\u60a8\\u7684\\u4ee3\\u7801\\u5c06\\u4f1a\\u88ab\\u4e0d\\u7f16\\u8bd1\\u76f4\\u63a5\\u8fd0\\u884c<\\/p>\"],\"cangjie\":[\"Cangjie\",\" \\u7248\\u672c\\uff1a0.53.11 (cjnative)<\\/p>\\r\\n\\r\\n \\u7f16\\u8bd1\\u53c2\\u6570\\uff1aclang 19<\\/code> \\u91c7\\u7528\\u6700\\u65b0 C++ 23 \\u6807\\u51c6\\uff0c\\u5e76\\u4f7f\\u7528 GCC 14 \\u63d0\\u4f9b\\u7684
libstdc++<\\/code>\\u3002<\\/p>\\r\\n\\r\\n
-O2<\\/code> \\u7ea7\\u4f18\\u5316\\uff0c\\u5e76\\u63d0\\u4f9b
-gline-tables-only<\\/code> \\u53c2\\u6570\\u3002AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code> \\u548c
use-after-free<\\/code> \\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
OpenJDK 21<\\/code>\\u3002\\u4f7f\\u7528\\u7f16\\u8bd1\\u53c2\\u6570
--enable-preview --release 21<\\/code><\\/p>\\r\\n\\r\\n
Python 2.7.18<\\/code><\\/p>\\r\\n\\r\\n
GCC 14<\\/code>\\uff0c\\u91c7\\u7528 GNU11 \\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n
-O2<\\/code> \\u7ea7\\u4f18\\u5316\\uff0c\\u5e76\\u63d0\\u4f9b
-g1<\\/code> \\u53c2\\u6570\\u3002 AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code> \\u548c
use-after-free<\\/code> \\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; \\/* we'll use this field as the key *\\/\\r\\n char name[10];\\r\\n UT_hash_handle hh; \\/* makes this structure hashable *\\/\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\"],\"csharp\":[\"C#\",\"
Node.js 22.14.0<\\/code><\\/p>\\r\\n\\r\\n
--harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f \\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n
Ruby 3.2<\\/code> \\u6267\\u884c<\\/p>\\r\\n\\r\\n
Swift 6.0<\\/code><\\/p>\\r\\n\\r\\n
Go 1.23<\\/code><\\/p>\\r\\n\\r\\n
Python 3.11<\\/code><\\/p>\\r\\n\\r\\n
Scala 3.3.1<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"
Kotlin 2.1.10<\\/code><\\/p>\"],\"rust\":[\"Rust\",\"
rust 1.85.0<\\/code><\\/p>\\r\\n\\r\\n
PHP 8.2<\\/code>.<\\/p>\\r\\n\\r\\n
-O2 --disable-reflection<\\/code><\\/p>\\r\\n\\r\\n