{ "data": { "question": { "questionId": "3348", "questionFrontendId": "3108", "boundTopicId": null, "title": "Minimum Cost Walk in Weighted Graph", "titleSlug": "minimum-cost-walk-in-weighted-graph", "content": "

There is an undirected weighted graph with n vertices labeled from 0 to n - 1.

\n\n

You are given the integer n and an array edges, where edges[i] = [ui, vi, wi] indicates that there is an edge between vertices ui and vi with a weight of wi.

\n\n

A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It's important to note that a walk may visit the same edge or vertex more than once.

\n\n

The cost of a walk starting at node u and ending at node v is defined as the bitwise AND of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is w0, w1, w2, ..., wk, then the cost is calculated as w0 & w1 & w2 & ... & wk, where & denotes the bitwise AND operator.

\n\n

You are also given a 2D array query, where query[i] = [si, ti]. For each query, you need to find the minimum cost of the walk starting at vertex si and ending at vertex ti. If there exists no such walk, the answer is -1.

\n\n

Return the array answer, where answer[i] denotes the minimum cost of a walk for query i.

\n\n

 

\n

Example 1:

\n\n
\n

Input: n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]

\n\n

Output: [1,-1]

\n\n

Explanation:

\n\"\"\n

To achieve the cost of 1 in the first query, we need to move on the following edges: 0->1 (weight 7), 1->2 (weight 1), 2->1 (weight 1), 1->3 (weight 7).

\n\n

In the second query, there is no walk between nodes 3 and 4, so the answer is -1.

\n\n

Example 2:

\n
\n\n
\n

Input: n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]

\n\n

Output: [0]

\n\n

Explanation:

\n\"\"\n

To achieve the cost of 0 in the first query, we need to move on the following edges: 1->2 (weight 1), 2->1 (weight 6), 1->2 (weight 1).

\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 17, "dislikes": 6, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "5\n[[0,1,7],[1,3,7],[1,2,1]]\n[[0,3],[3,4]]\n3\n[[0,2,7],[0,1,15],[1,2,6],[1,2,1]]\n[[1,2]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector minimumCost(int n, vector>& edges, vector>& query) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int[] minimumCost(int n, int[][] edges, int[][] query) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minimumCost(self, n, edges, query):\n \"\"\"\n :type n: int\n :type edges: List[List[int]]\n :type query: List[List[int]]\n :rtype: List[int]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minimumCost(self, n: int, edges: List[List[int]], query: List[List[int]]) -> List[int]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* minimumCost(int n, int** edges, int edgesSize, int* edgesColSize, int** query, int querySize, int* queryColSize, int* returnSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int[] MinimumCost(int n, int[][] edges, int[][] query) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number} n\n * @param {number[][]} edges\n * @param {number[][]} query\n * @return {number[]}\n */\nvar minimumCost = function(n, edges, query) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minimumCost(n: number, edges: number[][], query: number[][]): number[] {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer $n\n * @param Integer[][] $edges\n * @param Integer[][] $query\n * @return Integer[]\n */\n function minimumCost($n, $edges, $query) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minimumCost(_ n: Int, _ edges: [[Int]], _ query: [[Int]]) -> [Int] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minimumCost(n: Int, edges: Array, query: Array): IntArray {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n List minimumCost(int n, List> edges, List> query) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minimumCost(n int, edges [][]int, query [][]int) []int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer} n\n# @param {Integer[][]} edges\n# @param {Integer[][]} query\n# @return {Integer[]}\ndef minimum_cost(n, edges, query)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minimumCost(n: Int, edges: Array[Array[Int]], query: Array[Array[Int]]): Array[Int] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn minimum_cost(n: i32, edges: Vec>, query: Vec>) -> Vec {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (minimum-cost n edges query)\n (-> exact-integer? (listof (listof exact-integer?)) (listof (listof exact-integer?)) (listof exact-integer?))\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec minimum_cost(N :: integer(), Edges :: [[integer()]], Query :: [[integer()]]) -> [integer()].\nminimum_cost(N, Edges, Query) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec minimum_cost(n :: integer, edges :: [[integer]], query :: [[integer]]) :: [integer]\n def minimum_cost(n, edges, query) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"2.4K\", \"totalSubmission\": \"9.4K\", \"totalAcceptedRaw\": 2371, \"totalSubmissionRaw\": 9366, \"acRate\": \"25.3%\"}", "hints": [ "The intended solution uses Disjoint Set Union.", "Notice that, if u and v are not connected then the answer is -1, otherwise we can use all the edges from the connected component where both belong to." ], "solution": null, "status": null, "sampleTestCase": "5\n[[0,1,7],[1,3,7],[1,2,1]]\n[[0,3],[3,4]]", "metaData": "{\n \"name\": \"minimumCost\",\n \"params\": [\n {\n \"name\": \"n\",\n \"type\": \"integer\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"edges\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"query\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 17 using the latest C++ 20 standard, and libstdc++ provided by GCC 11.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 21. Using compile arguments: --enable-preview --release 21

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 11 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 12 with .NET 8 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 20.10.0.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.2

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.9.

\\r\\n\\r\\n

You may use swift-algorithms 1.2.0 and swift-collections 1.0.6.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1 and https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha library.

\"], \"python3\": [\"Python3\", \"

Python 3.11.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 3.3.1.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\\r\\n\\r\\n

We are using an experimental compiler provided by JetBrains.

\"], \"rust\": [\"Rust\", \"

Rust 1.74.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.2.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 20.10.0.

\\r\\n\\r\\n

Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Racket CS v8.11

\\r\\n\\r\\n

Using #lang racket

\\r\\n\\r\\n

Required data/gvector data/queue data/order data/heap automatically for your convenience

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 26\"], \"elixir\": [\"Elixir\", \"Elixir 1.15 with Erlang/OTP 26\"], \"dart\": [\"Dart\", \"

Dart 3.2

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }