给你一个 m x n 的网格。一个机器人从网格的左上角 (0, 0) 出发,目标是到达网格的右下角 (m - 1, n - 1)。在任意时刻,机器人只能向右或向下移动。

网格中的每个单元格包含一个值 coins[i][j]

机器人有一项特殊能力,可以在行程中 最多感化 2个单元格的强盗,从而防止这些单元格的金币被抢走。

注意:机器人的总金币数可以是负数。

返回机器人在路径上可以获得的 最大金币数 

 

示例 1:

输入: coins = [[0,1,-1],[1,-2,3],[2,-3,4]]

输出: 8

解释:

一个获得最多金币的最优路径如下:

  1. (0, 0) 出发,初始金币为 0(总金币 = 0)。
  2. 移动到 (0, 1),获得 1 枚金币(总金币 = 0 + 1 = 1)。
  3. 移动到 (1, 1),遇到强盗抢走 2 枚金币。机器人在此处使用一次感化能力,避免被抢(总金币 = 1)。
  4. 移动到 (1, 2),获得 3 枚金币(总金币 = 1 + 3 = 4)。
  5. 移动到 (2, 2),获得 4 枚金币(总金币 = 4 + 4 = 8)。

示例 2:

输入: coins = [[10,10,10],[10,10,10]]

输出: 40

解释:

一个获得最多金币的最优路径如下:

  1. (0, 0) 出发,初始金币为 10(总金币 = 10)。
  2. 移动到 (0, 1),获得 10 枚金币(总金币 = 10 + 10 = 20)。
  3. 移动到 (0, 2),再获得 10 枚金币(总金币 = 20 + 10 = 30)。
  4. 移动到 (1, 2),获得 10 枚金币(总金币 = 30 + 10 = 40)。

 

提示: