如果序列 X_1, X_2, ..., X_n
满足下列条件,就说它是 斐波那契式 的:
n >= 3
i + 2 <= n
,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列 arr
,找到 arr
中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
(回想一下,子序列是从原序列 arr
中派生出来的,它从 arr
中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8]
是 [3, 4, 5, 6, 7, 8]
的一个子序列)
示例 1:
输入: arr = [1,2,3,4,5,6,7,8] 输出: 5 解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。
示例 2:
输入: arr = [1,3,7,11,12,14,18] 输出: 3 解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。
提示:
3 <= arr.length <= 1000
1 <= arr[i] < arr[i + 1] <= 10^9
注意:本题与主站 873 题相同: https://leetcode-cn.com/problems/length-of-longest-fibonacci-subsequence/