给你一个下标从 0 开始包含 n 个正整数的数组 arr ,和一个正整数 k 。

如果对于每个满足 k <= i <= n-1 的下标 i ,都有 arr[i-k] <= arr[i] ,那么我们称 arr 是 K 递增 的。

每一次 操作 中,你可以选择一个下标 i 并将 arr[i] 改成任意 正整数。

请你返回对于给定的 k ,使数组变成 K 递增的 最少操作次数 。

 

示例 1:

输入:arr = [5,4,3,2,1], k = 1
输出:4
解释:
对于 k = 1 ,数组最终必须变成非递减的。
可行的 K 递增结果数组为 [5,6,7,8,9],[1,1,1,1,1],[2,2,3,4,4] 。它们都需要 4 次操作。
次优解是将数组变成比方说 [6,7,8,9,10] ,因为需要 5 次操作。
显然我们无法使用少于 4 次操作将数组变成 K 递增的。

示例 2:

输入:arr = [4,1,5,2,6,2], k = 2
输出:0
解释:
这是题目描述中的例子。
对于每个满足 2 <= i <= 5 的下标 i ,有 arr[i-2] <= arr[i] 。
由于给定数组已经是 K 递增的,我们不需要进行任何操作。

示例 3:

输入:arr = [4,1,5,2,6,2], k = 3
输出:2
解释:
下标 3 和 5 是仅有的 3 <= i <= 5 且不满足 arr[i-3] <= arr[i] 的下标。
将数组变成 K 递增的方法之一是将 arr[3] 变为 4 ,且将 arr[5] 变成 5 。
数组变为 [4,1,5,4,6,5] 。
可能有其他方法将数组变为 K 递增的,但没有任何一种方法需要的操作次数小于 2 次。

 

提示: