{ "data": { "question": { "questionId": "3363", "questionFrontendId": "3092", "boundTopicId": null, "title": "Most Frequent IDs", "titleSlug": "most-frequent-ids", "content": "

The problem involves tracking the frequency of IDs in a collection that changes over time. You have two integer arrays, nums and freq, of equal length n. Each element in nums represents an ID, and the corresponding element in freq indicates how many times that ID should be added to or removed from the collection at each step.

\n\n\n\n

Return an array ans of length n, where ans[i] represents the count of the most frequent ID in the collection after the ith step. If the collection is empty at any step, ans[i] should be 0 for that step.

\n\n

 

\n

Example 1:

\n\n
\n

Input: nums = [2,3,2,1], freq = [3,2,-3,1]

\n\n

Output: [3,3,2,2]

\n\n

Explanation:

\n\n

After step 0, we have 3 IDs with the value of 2. So ans[0] = 3.
\nAfter step 1, we have 3 IDs with the value of 2 and 2 IDs with the value of 3. So ans[1] = 3.
\nAfter step 2, we have 2 IDs with the value of 3. So ans[2] = 2.
\nAfter step 3, we have 2 IDs with the value of 3 and 1 ID with the value of 1. So ans[3] = 2.

\n
\n\n

Example 2:

\n\n
\n

Input: nums = [5,5,3], freq = [2,-2,1]

\n\n

Output: [2,0,1]

\n\n

Explanation:

\n\n

After step 0, we have 2 IDs with the value of 5. So ans[0] = 2.
\nAfter step 1, there are no IDs. So ans[1] = 0.
\nAfter step 2, we have 1 ID with the value of 3. So ans[2] = 1.

\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 189, "dislikes": 23, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[2,3,2,1]\n[3,2,-3,1]\n[5,5,3]\n[2,-2,1]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Hash Table", "slug": "hash-table", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Heap (Priority Queue)", "slug": "heap-priority-queue", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Ordered Set", "slug": "ordered-set", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector mostFrequentIDs(vector& nums, vector& freq) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public long[] mostFrequentIDs(int[] nums, int[] freq) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def mostFrequentIDs(self, nums, freq):\n \"\"\"\n :type nums: List[int]\n :type freq: List[int]\n :rtype: List[int]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def mostFrequentIDs(self, nums: List[int], freq: List[int]) -> List[int]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nlong long* mostFrequentIDs(int* nums, int numsSize, int* freq, int freqSize, int* returnSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public long[] MostFrequentIDs(int[] nums, int[] freq) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @param {number[]} freq\n * @return {number[]}\n */\nvar mostFrequentIDs = function(nums, freq) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function mostFrequentIDs(nums: number[], freq: number[]): number[] {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @param Integer[] $freq\n * @return Integer[]\n */\n function mostFrequentIDs($nums, $freq) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func mostFrequentIDs(_ nums: [Int], _ freq: [Int]) -> [Int] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun mostFrequentIDs(nums: IntArray, freq: IntArray): LongArray {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n List mostFrequentIDs(List nums, List freq) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func mostFrequentIDs(nums []int, freq []int) []int64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @param {Integer[]} freq\n# @return {Integer[]}\ndef most_frequent_i_ds(nums, freq)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def mostFrequentIDs(nums: Array[Int], freq: Array[Int]): Array[Long] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn most_frequent_i_ds(nums: Vec, freq: Vec) -> Vec {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (most-frequent-i-ds nums freq)\n (-> (listof exact-integer?) (listof exact-integer?) (listof exact-integer?))\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec most_frequent_i_ds(Nums :: [integer()], Freq :: [integer()]) -> [integer()].\nmost_frequent_i_ds(Nums, Freq) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec most_frequent_i_ds(nums :: [integer], freq :: [integer]) :: [integer]\n def most_frequent_i_ds(nums, freq) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"16.4K\", \"totalSubmission\": \"39.4K\", \"totalAcceptedRaw\": 16407, \"totalSubmissionRaw\": 39382, \"acRate\": \"41.7%\"}", "hints": [ "Use an ordered set for maintaining the occurrences of each ID.", "After step i find the occurrences of nums[i].", "Change the occurrences of nums[i] in the ordered set." ], "solution": null, "status": null, "sampleTestCase": "[2,3,2,1]\n[3,2,-3,1]", "metaData": "{\n \"name\": \"mostFrequentIDs\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"freq\"\n }\n ],\n \"return\": {\n \"type\": \"long[]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 17 using the latest C++ 20 standard, and libstdc++ provided by GCC 11.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 21. Using compile arguments: --enable-preview --release 21

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 11 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 12 with .NET 8 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 20.10.0.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.2

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.9.

\\r\\n\\r\\n

You may use swift-algorithms 1.2.0 and swift-collections 1.0.6.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1 and https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha library.

\"], \"python3\": [\"Python3\", \"

Python 3.11.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 3.3.1.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\\r\\n\\r\\n

We are using an experimental compiler provided by JetBrains.

\"], \"rust\": [\"Rust\", \"

Rust 1.74.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.2.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 20.10.0.

\\r\\n\\r\\n

Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Racket CS v8.11

\\r\\n\\r\\n

Using #lang racket

\\r\\n\\r\\n

Required data/gvector data/queue data/order data/heap automatically for your convenience

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 26\"], \"elixir\": [\"Elixir\", \"Elixir 1.15 with Erlang/OTP 26\"], \"dart\": [\"Dart\", \"

Dart 3.2

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }