{ "data": { "question": { "questionId": "1025", "questionFrontendId": "983", "boundTopicId": null, "title": "Minimum Cost For Tickets", "titleSlug": "minimum-cost-for-tickets", "content": "
You have planned some train traveling one year in advance. The days of the year in which you will travel are given as an integer array days
. Each day is an integer from 1
to 365
.
Train tickets are sold in three different ways:
\n\ncosts[0]
dollars,costs[1]
dollars, andcosts[2]
dollars.The passes allow that many days of consecutive travel.
\n\n2
, then we can travel for 7
days: 2
, 3
, 4
, 5
, 6
, 7
, and 8
.Return the minimum number of dollars you need to travel every day in the given list of days.
\n\n\n
Example 1:
\n\n\nInput: days = [1,4,6,7,8,20], costs = [2,7,15]\nOutput: 11\nExplanation: For example, here is one way to buy passes that lets you travel your travel plan:\nOn day 1, you bought a 1-day pass for costs[0] = $2, which covered day 1.\nOn day 3, you bought a 7-day pass for costs[1] = $7, which covered days 3, 4, ..., 9.\nOn day 20, you bought a 1-day pass for costs[0] = $2, which covered day 20.\nIn total, you spent $11 and covered all the days of your travel.\n\n\n
Example 2:
\n\n\nInput: days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]\nOutput: 17\nExplanation: For example, here is one way to buy passes that lets you travel your travel plan:\nOn day 1, you bought a 30-day pass for costs[2] = $15 which covered days 1, 2, ..., 30.\nOn day 31, you bought a 1-day pass for costs[0] = $2 which covered day 31.\nIn total, you spent $17 and covered all the days of your travel.\n\n\n
\n
Constraints:
\n\n1 <= days.length <= 365
1 <= days[i] <= 365
days
is in strictly increasing order.costs.length == 3
1 <= costs[i] <= 1000
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": { "id": "1280", "date": "2023-03-28", "incompleteChallengeCount": 0, "streakCount": 0, "type": "DAILY", "__typename": "ChallengeQuestionNode" }, "__typename": "QuestionNode" } } }