{ "data": { "question": { "questionId": "2205", "questionFrontendId": "2100", "boundTopicId": null, "title": "Find Good Days to Rob the Bank", "titleSlug": "find-good-days-to-rob-the-bank", "content": "
You and a gang of thieves are planning on robbing a bank. You are given a 0-indexed integer array security
, where security[i]
is the number of guards on duty on the ith
day. The days are numbered starting from 0
. You are also given an integer time
.
The ith
day is a good day to rob the bank if:
time
days before and after the ith
day,time
days before i
are non-increasing, andtime
days after i
are non-decreasing.More formally, this means day i
is a good day to rob the bank if and only if security[i - time] >= security[i - time + 1] >= ... >= security[i] <= ... <= security[i + time - 1] <= security[i + time]
.
Return a list of all days (0-indexed) that are good days to rob the bank. The order that the days are returned in does not matter.
\n\n\n
Example 1:
\n\n\nInput: security = [5,3,3,3,5,6,2], time = 2\nOutput: [2,3]\nExplanation:\nOn day 2, we have security[0] >= security[1] >= security[2] <= security[3] <= security[4].\nOn day 3, we have security[1] >= security[2] >= security[3] <= security[4] <= security[5].\nNo other days satisfy this condition, so days 2 and 3 are the only good days to rob the bank.\n\n\n
Example 2:
\n\n\nInput: security = [1,1,1,1,1], time = 0\nOutput: [0,1,2,3,4]\nExplanation:\nSince time equals 0, every day is a good day to rob the bank, so return every day.\n\n\n
Example 3:
\n\n\nInput: security = [1,2,3,4,5,6], time = 2\nOutput: []\nExplanation:\nNo day has 2 days before it that have a non-increasing number of guards.\nThus, no day is a good day to rob the bank, so return an empty list.\n\n\n
\n
Constraints:
\n\n1 <= security.length <= 105
0 <= security[i], time <= 105
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }