{ "data": { "question": { "questionId": "2915", "questionFrontendId": "2845", "boundTopicId": null, "title": "Count of Interesting Subarrays", "titleSlug": "count-of-interesting-subarrays", "content": "
You are given a 0-indexed integer array nums
, an integer modulo
, and an integer k
.
Your task is to find the count of subarrays that are interesting.
\n\nA subarray nums[l..r]
is interesting if the following condition holds:
cnt
be the number of indices i
in the range [l, r]
such that nums[i] % modulo == k
. Then, cnt % modulo == k
.Return an integer denoting the count of interesting subarrays.
\n\nNote: A subarray is a contiguous non-empty sequence of elements within an array.
\n\n\n
Example 1:
\n\n\nInput: nums = [3,2,4], modulo = 2, k = 1\nOutput: 3\nExplanation: In this example the interesting subarrays are: \nThe subarray nums[0..0] which is [3]. \n- There is only one index, i = 0, in the range [0, 0] that satisfies nums[i] % modulo == k. \n- Hence, cnt = 1 and cnt % modulo == k. \nThe subarray nums[0..1] which is [3,2].\n- There is only one index, i = 0, in the range [0, 1] that satisfies nums[i] % modulo == k. \n- Hence, cnt = 1 and cnt % modulo == k.\nThe subarray nums[0..2] which is [3,2,4]. \n- There is only one index, i = 0, in the range [0, 2] that satisfies nums[i] % modulo == k. \n- Hence, cnt = 1 and cnt % modulo == k. \nIt can be shown that there are no other interesting subarrays. So, the answer is 3.\n\n
Example 2:
\n\n\nInput: nums = [3,1,9,6], modulo = 3, k = 0\nOutput: 2\nExplanation: In this example the interesting subarrays are: \nThe subarray nums[0..3] which is [3,1,9,6]. \n- There are three indices, i = 0, 2, 3, in the range [0, 3] that satisfy nums[i] % modulo == k. \n- Hence, cnt = 3 and cnt % modulo == k. \nThe subarray nums[1..1] which is [1]. \n- There is no index, i, in the range [1, 1] that satisfies nums[i] % modulo == k. \n- Hence, cnt = 0 and cnt % modulo == k. \nIt can be shown that there are no other interesting subarrays. So, the answer is 2.\n\n
\n
Constraints:
\n\n1 <= nums.length <= 105
1 <= nums[i] <= 109
1 <= modulo <= 109
0 <= k < modulo
count[i]
be the number of indices where nums[i] % modulo == k
among the first i
indices.",
"count[0] = 0
and count[i] = count[i - 1] + (nums[i - 1] % modulo == k ? 1 : 0)
for i = 1, 2, ..., n
.",
"Now we want to calculate for each i = 1, 2, ..., n
, how many indices j < i
such that (count[i] - count[j]) % modulo == k
.",
"Rewriting (count[i] - count[j]) % modulo == k
becomes count[j] = (count[i] + modulo - k) % modulo
.",
"Using a map data structure, for each i = 0, 1, 2, ..., n
, we just sum up all map[(count[i] + modulo - k) % modulo]
before increasing map[count[i] % modulo]
, and the total sum is the final answer."
],
"solution": null,
"status": null,
"sampleTestCase": "[3,2,4]\n2\n1",
"metaData": "{\n \"name\": \"countInterestingSubarrays\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"listCompiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }