There is a tree (i.e. a connected, undirected graph with no cycles) consisting of n
nodes numbered from 0
to n - 1
and exactly n - 1
edges.
You are given a 0-indexed integer array vals
of length n
where vals[i]
denotes the value of the ith
node. You are also given a 2D integer array edges
where edges[i] = [ai, bi]
denotes that there exists an undirected edge connecting nodes ai
and bi
.
A good path is a simple path that satisfies the following conditions:
Return the number of distinct good paths.
Note that a path and its reverse are counted as the same path. For example, 0 -> 1
is considered to be the same as 1 -> 0
. A single node is also considered as a valid path.
Example 1:
Input: vals = [1,3,2,1,3], edges = [[0,1],[0,2],[2,3],[2,4]] Output: 6 Explanation: There are 5 good paths consisting of a single node. There is 1 additional good path: 1 -> 0 -> 2 -> 4. (The reverse path 4 -> 2 -> 0 -> 1 is treated as the same as 1 -> 0 -> 2 -> 4.) Note that 0 -> 2 -> 3 is not a good path because vals[2] > vals[0].
Example 2:
Input: vals = [1,1,2,2,3], edges = [[0,1],[1,2],[2,3],[2,4]] Output: 7 Explanation: There are 5 good paths consisting of a single node. There are 2 additional good paths: 0 -> 1 and 2 -> 3.
Example 3:
Input: vals = [1], edges = [] Output: 1 Explanation: The tree consists of only one node, so there is one good path.
Constraints:
n == vals.length
1 <= n <= 3 * 104
0 <= vals[i] <= 105
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges
represents a valid tree.