{ "data": { "question": { "questionId": "1153", "questionFrontendId": "1068", "boundTopicId": null, "title": "Product Sales Analysis I", "titleSlug": "product-sales-analysis-i", "content": "
Table: Sales
\n+-------------+-------+\n| Column Name | Type |\n+-------------+-------+\n| sale_id | int |\n| product_id | int |\n| year | int |\n| quantity | int |\n| price | int |\n+-------------+-------+\n(sale_id, year) is the primary key (combination of columns with unique values) of this table.\nproduct_id is a foreign key (reference column) to Product
table.\nEach row of this table shows a sale on the product product_id in a certain year.\nNote that the price is per unit.\n
\n\n\n\n
Table: Product
\n+--------------+---------+\n| Column Name | Type |\n+--------------+---------+\n| product_id | int |\n| product_name | varchar |\n+--------------+---------+\nproduct_id is the primary key (column with unique values) of this table.\nEach row of this table indicates the product name of each product.\n\n\n
\n\n
Write a solution to report the product_name
, year
, and price
for each sale_id
in the Sales
table.
Return the resulting table in any order.
\n\nThe result format is in the following example.
\n\n\n
Example 1:
\n\n\nInput: \nSales table:\n+---------+------------+------+----------+-------+\n| sale_id | product_id | year | quantity | price |\n+---------+------------+------+----------+-------+ \n| 1 | 100 | 2008 | 10 | 5000 |\n| 2 | 100 | 2009 | 12 | 5000 |\n| 7 | 200 | 2011 | 15 | 9000 |\n+---------+------------+------+----------+-------+\nProduct table:\n+------------+--------------+\n| product_id | product_name |\n+------------+--------------+\n| 100 | Nokia |\n| 200 | Apple |\n| 300 | Samsung |\n+------------+--------------+\nOutput: \n+--------------+-------+-------+\n| product_name | year | price |\n+--------------+-------+-------+\n| Nokia | 2008 | 5000 |\n| Nokia | 2009 | 5000 |\n| Apple | 2011 | 9000 |\n+--------------+-------+-------+\nExplanation: \nFrom sale_id = 1, we can conclude that Nokia was sold for 5000 in the year 2008.\nFrom sale_id = 2, we can conclude that Nokia was sold for 5000 in the year 2009.\nFrom sale_id = 7, we can conclude that Apple was sold for 9000 in the year 2011.\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 620, "dislikes": 195, "isLiked": null, "similarQuestions": "[{\"title\": \"Product Sales Analysis II\", \"titleSlug\": \"product-sales-analysis-ii\", \"difficulty\": \"Easy\", \"translatedTitle\": null}, {\"title\": \"Product Sales Analysis IV\", \"titleSlug\": \"product-sales-analysis-iv\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Product Sales Analysis V\", \"titleSlug\": \"product-sales-analysis-v\", \"difficulty\": \"Easy\", \"translatedTitle\": null}]", "exampleTestcases": "{\"headers\":{\"Sales\":[\"sale_id\",\"product_id\",\"year\",\"quantity\",\"price\"],\"Product\":[\"product_id\",\"product_name\"]},\"rows\":{\"Sales\":[[1,100,2008,10,5000],[2,100,2009,12,5000],[7,200,2011,15,9000]],\"Product\":[[100,\"Nokia\"],[200,\"Apple\"],[300,\"Samsung\"]]}}", "categoryTitle": "Database", "contributors": [], "topicTags": [ { "name": "Database", "slug": "database", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "MySQL", "langSlug": "mysql", "code": "# Write your MySQL query statement below\n", "__typename": "CodeSnippetNode" }, { "lang": "MS SQL Server", "langSlug": "mssql", "code": "/* Write your T-SQL query statement below */\n", "__typename": "CodeSnippetNode" }, { "lang": "Oracle", "langSlug": "oraclesql", "code": "/* Write your PL/SQL query statement below */\n", "__typename": "CodeSnippetNode" }, { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef sales_analysis(sales: pd.DataFrame, product: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" }, { "lang": "PostgreSQL", "langSlug": "postgresql", "code": "-- Write your PostgreSQL query statement below\n", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"241.2K\", \"totalSubmission\": \"298.4K\", \"totalAcceptedRaw\": 241232, \"totalSubmissionRaw\": 298381, \"acRate\": \"80.8%\"}", "hints": [], "solution": { "id": "2044", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "{\"headers\":{\"Sales\":[\"sale_id\",\"product_id\",\"year\",\"quantity\",\"price\"],\"Product\":[\"product_id\",\"product_name\"]},\"rows\":{\"Sales\":[[1,100,2008,10,5000],[2,100,2009,12,5000],[7,200,2011,15,9000]],\"Product\":[[100,\"Nokia\"],[200,\"Apple\"],[300,\"Samsung\"]]}}", "metaData": "{\"mysql\": [\"Create table If Not Exists Sales (sale_id int, product_id int, year int, quantity int, price int)\", \"Create table If Not Exists Product (product_id int, product_name varchar(10))\"], \"mssql\": [\"Create table Sales (sale_id int, product_id int, year int, quantity int, price int)\", \"Create table Product (product_id int, product_name varchar(10))\"], \"oraclesql\": [\"Create table Sales (sale_id int, product_id int, year int, quantity int, price int)\", \"Create table Product (product_id int, product_name varchar(10))\"], \"database\": true, \"name\": \"sales_analysis\", \"pythondata\": [\"Sales = pd.DataFrame([], columns=['sale_id', 'product_id', 'year', 'quantity', 'price']).astype({'sale_id':'Int64', 'product_id':'Int64', 'year':'Int64', 'quantity':'Int64', 'price':'Int64'})\", \"Product = pd.DataFrame([], columns=['product_id', 'product_name']).astype({'product_id':'Int64', 'product_name':'object'})\"], \"postgresql\": [\"Create table If Not Exists Sales (sale_id int, product_id int, year int, quantity int, price int)\\n\", \"Create table If Not Exists Product (product_id int, product_name varchar(10))\"], \"database_schema\": {\"Sales\": {\"sale_id\": \"INT\", \"product_id\": \"INT\", \"year\": \"INT\", \"quantity\": \"INT\", \"price\": \"INT\"}, \"Product\": {\"product_id\": \"INT\", \"product_name\": \"VARCHAR(10)\"}}}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [ "Create table If Not Exists Sales (sale_id int, product_id int, year int, quantity int, price int)", "Create table If Not Exists Product (product_id int, product_name varchar(10))", "Truncate table Sales", "insert into Sales (sale_id, product_id, year, quantity, price) values ('1', '100', '2008', '10', '5000')", "insert into Sales (sale_id, product_id, year, quantity, price) values ('2', '100', '2009', '12', '5000')", "insert into Sales (sale_id, product_id, year, quantity, price) values ('7', '200', '2011', '15', '9000')", "Truncate table Product", "insert into Product (product_id, product_name) values ('100', 'Nokia')", "insert into Product (product_id, product_name) values ('200', 'Apple')", "insert into Product (product_id, product_name) values ('300', 'Samsung')" ], "enableRunCode": true, "enableTestMode": false, "enableDebugger": false, "envInfo": "{\"mysql\": [\"MySQL\", \"
MySQL 8.0
.
mssql server 2019
.
Oracle Sql 11.2
.
Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0
\"], \"postgresql\": [\"PostgreSQL\", \"PostgreSQL 16
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }