{ "data": { "question": { "questionId": "2543", "questionFrontendId": "2456", "boundTopicId": null, "title": "Most Popular Video Creator", "titleSlug": "most-popular-video-creator", "content": "
You are given two string arrays creators
and ids
, and an integer array views
, all of length n
. The ith
video on a platform was created by creator[i]
, has an id of ids[i]
, and has views[i]
views.
The popularity of a creator is the sum of the number of views on all of the creator's videos. Find the creator with the highest popularity and the id of their most viewed video.
\n\nReturn a 2D array of strings answer
where answer[i] = [creatori, idi]
means that creatori
has the highest popularity and idi
is the id of their most popular video. The answer can be returned in any order.
\n
Example 1:
\n\n\nInput: creators = ["alice","bob","alice","chris"], ids = ["one","two","three","four"], views = [5,10,5,4]\nOutput: [["alice","one"],["bob","two"]]\nExplanation:\nThe popularity of alice is 5 + 5 = 10.\nThe popularity of bob is 10.\nThe popularity of chris is 4.\nalice and bob are the most popular creators.\nFor bob, the video with the highest view count is "two".\nFor alice, the videos with the highest view count are "one" and "three". Since "one" is lexicographically smaller than "three", it is included in the answer.\n\n\n
Example 2:
\n\n\nInput: creators = ["alice","alice","alice"], ids = ["a","b","c"], views = [1,2,2]\nOutput: [["alice","b"]]\nExplanation:\nThe videos with id "b" and "c" have the highest view count.\nSince "b" is lexicographically smaller than "c", it is included in the answer.\n\n\n
\n
Constraints:
\n\nn == creators.length == ids.length == views.length
1 <= n <= 105
1 <= creators[i].length, ids[i].length <= 5
creators[i]
and ids[i]
consist only of lowercase English letters.0 <= views[i] <= 105
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }