{ "data": { "question": { "questionId": "2839", "questionFrontendId": "2736", "boundTopicId": null, "title": "Maximum Sum Queries", "titleSlug": "maximum-sum-queries", "content": "

You are given two 0-indexed integer arrays nums1 and nums2, each of length n, and a 1-indexed 2D array queries where queries[i] = [xi, yi].

\n\n

For the ith query, find the maximum value of nums1[j] + nums2[j] among all indices j (0 <= j < n), where nums1[j] >= xi and nums2[j] >= yi, or -1 if there is no j satisfying the constraints.

\n\n

Return an array answer where answer[i] is the answer to the ith query.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums1 = [4,3,1,2], nums2 = [2,4,9,5], queries = [[4,1],[1,3],[2,5]]\nOutput: [6,10,7]\nExplanation: \nFor the 1st query xi = 4 and yi = 1, we can select index j = 0 since nums1[j] >= 4 and nums2[j] >= 1. The sum nums1[j] + nums2[j] is 6, and we can show that 6 is the maximum we can obtain.\n\nFor the 2nd query xi = 1 and yi = 3, we can select index j = 2 since nums1[j] >= 1 and nums2[j] >= 3. The sum nums1[j] + nums2[j] is 10, and we can show that 10 is the maximum we can obtain. \n\nFor the 3rd query xi = 2 and yi = 5, we can select index j = 3 since nums1[j] >= 2 and nums2[j] >= 5. The sum nums1[j] + nums2[j] is 7, and we can show that 7 is the maximum we can obtain.\n\nTherefore, we return [6,10,7].\n
\n\n

Example 2:

\n\n
\nInput: nums1 = [3,2,5], nums2 = [2,3,4], queries = [[4,4],[3,2],[1,1]]\nOutput: [9,9,9]\nExplanation: For this example, we can use index j = 2 for all the queries since it satisfies the constraints for each query.\n
\n\n

Example 3:

\n\n
\nInput: nums1 = [2,1], nums2 = [2,3], queries = [[3,3]]\nOutput: [-1]\nExplanation: There is one query in this example with xi = 3 and yi = 3. For every index, j, either nums1[j] < xi or nums2[j] < yi. Hence, there is no solution. \n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 295, "dislikes": 15, "isLiked": null, "similarQuestions": "[{\"title\": \"Most Beautiful Item for Each Query\", \"titleSlug\": \"most-beautiful-item-for-each-query\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[4,3,1,2]\n[2,4,9,5]\n[[4,1],[1,3],[2,5]]\n[3,2,5]\n[2,3,4]\n[[4,4],[3,2],[1,1]]\n[2,1]\n[2,3]\n[[3,3]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Search", "slug": "binary-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Stack", "slug": "stack", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Indexed Tree", "slug": "binary-indexed-tree", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Segment Tree", "slug": "segment-tree", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Monotonic Stack", "slug": "monotonic-stack", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector maximumSumQueries(vector& nums1, vector& nums2, vector>& queries) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int[] maximumSumQueries(int[] nums1, int[] nums2, int[][] queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maximumSumQueries(self, nums1, nums2, queries):\n \"\"\"\n :type nums1: List[int]\n :type nums2: List[int]\n :type queries: List[List[int]]\n :rtype: List[int]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maximumSumQueries(self, nums1: List[int], nums2: List[int], queries: List[List[int]]) -> List[int]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* maximumSumQueries(int* nums1, int nums1Size, int* nums2, int nums2Size, int** queries, int queriesSize, int* queriesColSize, int* returnSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int[] MaximumSumQueries(int[] nums1, int[] nums2, int[][] queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums1\n * @param {number[]} nums2\n * @param {number[][]} queries\n * @return {number[]}\n */\nvar maximumSumQueries = function(nums1, nums2, queries) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maximumSumQueries(nums1: number[], nums2: number[], queries: number[][]): number[] {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums1\n * @param Integer[] $nums2\n * @param Integer[][] $queries\n * @return Integer[]\n */\n function maximumSumQueries($nums1, $nums2, $queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maximumSumQueries(_ nums1: [Int], _ nums2: [Int], _ queries: [[Int]]) -> [Int] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maximumSumQueries(nums1: IntArray, nums2: IntArray, queries: Array): IntArray {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n List maximumSumQueries(List nums1, List nums2, List> queries) {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maximumSumQueries(nums1 []int, nums2 []int, queries [][]int) []int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums1\n# @param {Integer[]} nums2\n# @param {Integer[][]} queries\n# @return {Integer[]}\ndef maximum_sum_queries(nums1, nums2, queries)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maximumSumQueries(nums1: Array[Int], nums2: Array[Int], queries: Array[Array[Int]]): Array[Int] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn maximum_sum_queries(nums1: Vec, nums2: Vec, queries: Vec>) -> Vec {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (maximum-sum-queries nums1 nums2 queries)\n (-> (listof exact-integer?) (listof exact-integer?) (listof (listof exact-integer?)) (listof exact-integer?))\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec maximum_sum_queries(Nums1 :: [integer()], Nums2 :: [integer()], Queries :: [[integer()]]) -> [integer()].\nmaximum_sum_queries(Nums1, Nums2, Queries) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec maximum_sum_queries(nums1 :: [integer], nums2 :: [integer], queries :: [[integer]]) :: [integer]\n def maximum_sum_queries(nums1, nums2, queries) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"4.5K\", \"totalSubmission\": \"16.8K\", \"totalAcceptedRaw\": 4460, \"totalSubmissionRaw\": 16764, \"acRate\": \"26.6%\"}", "hints": [ "Sort (x, y) tuples and queries by x-coordinate descending. Don’t forget to index queries before sorting so that you can answer them in the correct order.", "Before answering a query (min_x, min_y), add all (x, y) pairs with x >= min_x to some data structure.", "Use a monotone descending map to store (y, x + y) pairs. A monotone map has ascending keys and descending values. When inserting a pair (y, x + y), remove all pairs (y', x' + y') with y' < y and x' + y' <= x + y.", "To find the insertion position use binary search (built-in in many languages).", "When querying for max (x + y) over y >= y', use binary search to find the first pair (y, x + y) with y >= y'. It will have the maximum value of x + y because the map has monotone descending values." ], "solution": null, "status": null, "sampleTestCase": "[4,3,1,2]\n[2,4,9,5]\n[[4,1],[1,3],[2,5]]", "metaData": "{\n \"name\": \"maximumSumQueries\",\n \"params\": [\n {\n \"name\": \"nums1\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"nums2\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"queries\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }