{ "data": { "question": { "questionId": "3184", "questionFrontendId": "2926", "boundTopicId": null, "title": "Maximum Balanced Subsequence Sum", "titleSlug": "maximum-balanced-subsequence-sum", "content": "

You are given a 0-indexed integer array nums.

\n\n

A subsequence of nums having length k and consisting of indices i0 < i1 < ... < ik-1 is balanced if the following holds:

\n\n\n\n

A subsequence of nums having length 1 is considered balanced.

\n\n

Return an integer denoting the maximum possible sum of elements in a balanced subsequence of nums.

\n\n

A subsequence of an array is a new non-empty array that is formed from the original array by deleting some (possibly none) of the elements without disturbing the relative positions of the remaining elements.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums = [3,3,5,6]\nOutput: 14\nExplanation: In this example, the subsequence [3,5,6] consisting of indices 0, 2, and 3 can be selected.\nnums[2] - nums[0] >= 2 - 0.\nnums[3] - nums[2] >= 3 - 2.\nHence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.\nThe subsequence consisting of indices 1, 2, and 3 is also valid.\nIt can be shown that it is not possible to get a balanced subsequence with a sum greater than 14.
\n\n

Example 2:

\n\n
\nInput: nums = [5,-1,-3,8]\nOutput: 13\nExplanation: In this example, the subsequence [5,8] consisting of indices 0 and 3 can be selected.\nnums[3] - nums[0] >= 3 - 0.\nHence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.\nIt can be shown that it is not possible to get a balanced subsequence with a sum greater than 13.\n
\n\n

Example 3:

\n\n
\nInput: nums = [-2,-1]\nOutput: -1\nExplanation: In this example, the subsequence [-1] can be selected.\nIt is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 137, "dislikes": 7, "isLiked": null, "similarQuestions": "[{\"title\": \"Number of Pairs Satisfying Inequality\", \"titleSlug\": \"number-of-pairs-satisfying-inequality\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[3,3,5,6]\n[5,-1,-3,8]\n[-2,-1]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Search", "slug": "binary-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Indexed Tree", "slug": "binary-indexed-tree", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Segment Tree", "slug": "segment-tree", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n long long maxBalancedSubsequenceSum(vector& nums) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public long maxBalancedSubsequenceSum(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maxBalancedSubsequenceSum(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maxBalancedSubsequenceSum(self, nums: List[int]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "long long maxBalancedSubsequenceSum(int* nums, int numsSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public long MaxBalancedSubsequenceSum(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @return {number}\n */\nvar maxBalancedSubsequenceSum = function(nums) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maxBalancedSubsequenceSum(nums: number[]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @return Integer\n */\n function maxBalancedSubsequenceSum($nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maxBalancedSubsequenceSum(_ nums: [Int]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maxBalancedSubsequenceSum(nums: IntArray): Long {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int maxBalancedSubsequenceSum(List nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maxBalancedSubsequenceSum(nums []int) int64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @return {Integer}\ndef max_balanced_subsequence_sum(nums)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maxBalancedSubsequenceSum(nums: Array[Int]): Long = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn max_balanced_subsequence_sum(nums: Vec) -> i64 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (max-balanced-subsequence-sum nums)\n (-> (listof exact-integer?) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec max_balanced_subsequence_sum(Nums :: [integer()]) -> integer().\nmax_balanced_subsequence_sum(Nums) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec max_balanced_subsequence_sum(nums :: [integer]) :: integer\n def max_balanced_subsequence_sum(nums) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"4K\", \"totalSubmission\": \"18.3K\", \"totalAcceptedRaw\": 4023, \"totalSubmissionRaw\": 18259, \"acRate\": \"22.0%\"}", "hints": [ "Let dp[x] represent the maximum sum of a balanced subsequence ending at x.", "Rewriting the formula nums[ij] - nums[ij-1] >= ij - ij-1 gives nums[ij] - ij >= nums[ij-1] - ij-1.", "So, for some index x, we need to find an index y, y < x, such that dp[x] = nums[x] + dp[y] is maximized, and nums[x] - x >= nums[y] - y.", "There are many ways to achieve this. One method involves sorting the values of nums[x] - x for all indices x and using a segment/Fenwick tree with coordinate compression.", "Hence, using a dictionary or map, let's call it dict, where dict[nums[x] - x] represents the position of the value, nums[x] - x, in the segment tree.", "The tree is initialized with zeros initially.", "For indices x in order from [0, n - 1], dp[x] = max(nums[x], nums[x] + the maximum query from the tree in the range [0, dict[nums[x] - x]]), and if dp[x] is greater than the value in the tree at position dict[nums[x] - x], we update the value in the tree.", "The answer to the problem is the maximum value in dp." ], "solution": null, "status": null, "sampleTestCase": "[3,3,5,6]", "metaData": "{\n \"name\": \"maxBalancedSubsequenceSum\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n }\n ],\n \"return\": {\n \"type\": \"long\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }