{ "data": { "question": { "questionId": "781", "questionFrontendId": "770", "boundTopicId": null, "title": "Basic Calculator IV", "titleSlug": "basic-calculator-iv", "content": "
Given an expression such as expression = "e + 8 - a + 5"
and an evaluation map such as {"e": 1}
(given in terms of evalvars = ["e"]
and evalints = [1]
), return a list of tokens representing the simplified expression, such as ["-1*a","14"]
"2x"
or "-x"
.Expressions are evaluated in the usual order: brackets first, then multiplication, then addition and subtraction.
\n\nexpression = "1 + 2 * 3"
has an answer of ["7"]
.The format of the output is as follows:
\n\n"b*a*c"
, only "a*b*c"
."a*a*b*c"
has degree 4
.["-2*a*a*a", "3*a*a*b", "3*b*b", "4*a", "5*c", "-6"]
.0
are not included.\n\t"0"
has an output of []
.Note: You may assume that the given expression is always valid. All intermediate results will be in the range of [-231, 231 - 1]
.
\n
Example 1:
\n\n\nInput: expression = "e + 8 - a + 5", evalvars = ["e"], evalints = [1]\nOutput: ["-1*a","14"]\n\n\n
Example 2:
\n\n\nInput: expression = "e - 8 + temperature - pressure", evalvars = ["e", "temperature"], evalints = [1, 12]\nOutput: ["-1*pressure","5"]\n\n\n
Example 3:
\n\n\nInput: expression = "(e + 8) * (e - 8)", evalvars = [], evalints = []\nOutput: ["1*e*e","-64"]\n\n\n
\n
Constraints:
\n\n1 <= expression.length <= 250
expression
consists of lowercase English letters, digits, '+'
, '-'
, '*'
, '('
, ')'
, ' '
.expression
does not contain any leading or trailing spaces.expression
are separated by a single space.0 <= evalvars.length <= 100
1 <= evalvars[i].length <= 20
evalvars[i]
consists of lowercase English letters.evalints.length == evalvars.length
-100 <= evalints[i] <= 100
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }