{ "data": { "question": { "questionId": "3225", "questionFrontendId": "2958", "boundTopicId": null, "title": "Length of Longest Subarray With at Most K Frequency", "titleSlug": "length-of-longest-subarray-with-at-most-k-frequency", "content": "
You are given an integer array nums and an integer k.
The frequency of an element x is the number of times it occurs in an array.
An array is called good if the frequency of each element in this array is less than or equal to k.
Return the length of the longest good subarray of nums.
A subarray is a contiguous non-empty sequence of elements within an array.
\n\n\n
Example 1:
\n\n\nInput: nums = [1,2,3,1,2,3,1,2], k = 2\nOutput: 6\nExplanation: The longest possible good subarray is [1,2,3,1,2,3] since the values 1, 2, and 3 occur at most twice in this subarray. Note that the subarrays [2,3,1,2,3,1] and [3,1,2,3,1,2] are also good.\nIt can be shown that there are no good subarrays with length more than 6.\n\n\n
Example 2:
\n\n\nInput: nums = [1,2,1,2,1,2,1,2], k = 1\nOutput: 2\nExplanation: The longest possible good subarray is [1,2] since the values 1 and 2 occur at most once in this subarray. Note that the subarray [2,1] is also good.\nIt can be shown that there are no good subarrays with length more than 2.\n\n\n
Example 3:
\n\n\nInput: nums = [5,5,5,5,5,5,5], k = 4\nOutput: 4\nExplanation: The longest possible good subarray is [5,5,5,5] since the value 5 occurs 4 times in this subarray.\nIt can be shown that there are no good subarrays with length more than 4.\n\n\n
\n
Constraints:
\n\n1 <= nums.length <= 1051 <= nums[i] <= 1091 <= k <= nums.lengthi, find the rightmost index j >= i such that the frequency of each element in the subarray [i, j] is at most k.",
"We can use 2 pointers / sliding window to achieve it."
],
"solution": null,
"status": null,
"sampleTestCase": "[1,2,3,1,2,3,1,2]\n2",
"metaData": "{\n \"name\": \"maxSubarrayLength\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": true,
"envInfo": "{\"cpp\": [\"C++\", \"Compiled with clang 11 using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2 using the gnu11 standard.
Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7.
Kotlin 1.9.0.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }