{ "data": { "question": { "questionId": "3217", "questionFrontendId": "2959", "boundTopicId": null, "title": "Number of Possible Sets of Closing Branches", "titleSlug": "number-of-possible-sets-of-closing-branches", "content": "

There is a company with n branches across the country, some of which are connected by roads. Initially, all branches are reachable from each other by traveling some roads.

\n\n

The company has realized that they are spending an excessive amount of time traveling between their branches. As a result, they have decided to close down some of these branches (possibly none). However, they want to ensure that the remaining branches have a distance of at most maxDistance from each other.

\n\n

The distance between two branches is the minimum total traveled length needed to reach one branch from another.

\n\n

You are given integers n, maxDistance, and a 0-indexed 2D array roads, where roads[i] = [ui, vi, wi] represents the undirected road between branches ui and vi with length wi.

\n\n

Return the number of possible sets of closing branches, so that any branch has a distance of at most maxDistance from any other.

\n\n

Note that, after closing a branch, the company will no longer have access to any roads connected to it.

\n\n

Note that, multiple roads are allowed.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: n = 3, maxDistance = 5, roads = [[0,1,2],[1,2,10],[0,2,10]]\nOutput: 5\nExplanation: The possible sets of closing branches are:\n- The set [2], after closing, active branches are [0,1] and they are reachable to each other within distance 2.\n- The set [0,1], after closing, the active branch is [2].\n- The set [1,2], after closing, the active branch is [0].\n- The set [0,2], after closing, the active branch is [1].\n- The set [0,1,2], after closing, there are no active branches.\nIt can be proven, that there are only 5 possible sets of closing branches.\n
\n\n

Example 2:

\n\"\"\n
\nInput: n = 3, maxDistance = 5, roads = [[0,1,20],[0,1,10],[1,2,2],[0,2,2]]\nOutput: 7\nExplanation: The possible sets of closing branches are:\n- The set [], after closing, active branches are [0,1,2] and they are reachable to each other within distance 4.\n- The set [0], after closing, active branches are [1,2] and they are reachable to each other within distance 2.\n- The set [1], after closing, active branches are [0,2] and they are reachable to each other within distance 2.\n- The set [0,1], after closing, the active branch is [2].\n- The set [1,2], after closing, the active branch is [0].\n- The set [0,2], after closing, the active branch is [1].\n- The set [0,1,2], after closing, there are no active branches.\nIt can be proven, that there are only 7 possible sets of closing branches.\n
\n\n

Example 3:

\n\n
\nInput: n = 1, maxDistance = 10, roads = []\nOutput: 2\nExplanation: The possible sets of closing branches are:\n- The set [], after closing, the active branch is [0].\n- The set [0], after closing, there are no active branches.\nIt can be proven, that there are only 2 possible sets of closing branches.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 104, "dislikes": 9, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "3\n5\n[[0,1,2],[1,2,10],[0,2,10]]\n3\n5\n[[0,1,20],[0,1,10],[1,2,2],[0,2,2]]\n1\n10\n[]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Bit Manipulation", "slug": "bit-manipulation", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Graph", "slug": "graph", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Heap (Priority Queue)", "slug": "heap-priority-queue", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Enumeration", "slug": "enumeration", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Shortest Path", "slug": "shortest-path", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int numberOfSets(int n, int maxDistance, vector>& roads) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int numberOfSets(int n, int maxDistance, int[][] roads) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def numberOfSets(self, n, maxDistance, roads):\n \"\"\"\n :type n: int\n :type maxDistance: int\n :type roads: List[List[int]]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def numberOfSets(self, n: int, maxDistance: int, roads: List[List[int]]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int numberOfSets(int n, int maxDistance, int** roads, int roadsSize, int* roadsColSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int NumberOfSets(int n, int maxDistance, int[][] roads) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number} n\n * @param {number} maxDistance\n * @param {number[][]} roads\n * @return {number}\n */\nvar numberOfSets = function(n, maxDistance, roads) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function numberOfSets(n: number, maxDistance: number, roads: number[][]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer $n\n * @param Integer $maxDistance\n * @param Integer[][] $roads\n * @return Integer\n */\n function numberOfSets($n, $maxDistance, $roads) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func numberOfSets(_ n: Int, _ maxDistance: Int, _ roads: [[Int]]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun numberOfSets(n: Int, maxDistance: Int, roads: Array): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int numberOfSets(int n, int maxDistance, List> roads) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func numberOfSets(n int, maxDistance int, roads [][]int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer} n\n# @param {Integer} max_distance\n# @param {Integer[][]} roads\n# @return {Integer}\ndef number_of_sets(n, max_distance, roads)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def numberOfSets(n: Int, maxDistance: Int, roads: Array[Array[Int]]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn number_of_sets(n: i32, max_distance: i32, roads: Vec>) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (number-of-sets n maxDistance roads)\n (-> exact-integer? exact-integer? (listof (listof exact-integer?)) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec number_of_sets(N :: integer(), MaxDistance :: integer(), Roads :: [[integer()]]) -> integer().\nnumber_of_sets(N, MaxDistance, Roads) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec number_of_sets(n :: integer, max_distance :: integer, roads :: [[integer]]) :: integer\n def number_of_sets(n, max_distance, roads) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"4.5K\", \"totalSubmission\": \"9.4K\", \"totalAcceptedRaw\": 4518, \"totalSubmissionRaw\": 9429, \"acRate\": \"47.9%\"}", "hints": [ "Try all the possibilities of closing branches.", "On the vertices that are not closed, use Floyd-Warshall algorithm to find the shortest paths." ], "solution": null, "status": null, "sampleTestCase": "3\n5\n[[0,1,2],[1,2,10],[0,2,10]]", "metaData": "{\n \"name\": \"numberOfSets\",\n \"params\": [\n {\n \"name\": \"n\",\n \"type\": \"integer\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"maxDistance\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"roads\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }