{ "data": { "question": { "questionId": "2952", "questionFrontendId": "2809", "boundTopicId": null, "title": "Minimum Time to Make Array Sum At Most x", "titleSlug": "minimum-time-to-make-array-sum-at-most-x", "content": "

You are given two 0-indexed integer arrays nums1 and nums2 of equal length. Every second, for all indices 0 <= i < nums1.length, value of nums1[i] is incremented by nums2[i]. After this is done, you can do the following operation:

\n\n\n\n

You are also given an integer x.

\n\n

Return the minimum time in which you can make the sum of all elements of nums1 to be less than or equal to x, or -1 if this is not possible.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums1 = [1,2,3], nums2 = [1,2,3], x = 4\nOutput: 3\nExplanation: \nFor the 1st second, we apply the operation on i = 0. Therefore nums1 = [0,2+2,3+3] = [0,4,6]. \nFor the 2nd second, we apply the operation on i = 1. Therefore nums1 = [0+1,0,6+3] = [1,0,9]. \nFor the 3rd second, we apply the operation on i = 2. Therefore nums1 = [1+1,0+2,0] = [2,2,0]. \nNow sum of nums1 = 4. It can be shown that these operations are optimal, so we return 3.\n\n
\n\n

Example 2:

\n\n
\nInput: nums1 = [1,2,3], nums2 = [3,3,3], x = 4\nOutput: -1\nExplanation: It can be shown that the sum of nums1 will always be greater than x, no matter which operations are performed.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 211, "dislikes": 10, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[1,2,3]\n[1,2,3]\n4\n[1,2,3]\n[3,3,3]\n4", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minimumTime(vector& nums1, vector& nums2, int x) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int minimumTime(List nums1, List nums2, int x) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minimumTime(self, nums1, nums2, x):\n \"\"\"\n :type nums1: List[int]\n :type nums2: List[int]\n :type x: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minimumTime(self, nums1: List[int], nums2: List[int], x: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int minimumTime(int* nums1, int nums1Size, int* nums2, int nums2Size, int x){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MinimumTime(IList nums1, IList nums2, int x) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums1\n * @param {number[]} nums2\n * @param {number} x\n * @return {number}\n */\nvar minimumTime = function(nums1, nums2, x) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minimumTime(nums1: number[], nums2: number[], x: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums1\n * @param Integer[] $nums2\n * @param Integer $x\n * @return Integer\n */\n function minimumTime($nums1, $nums2, $x) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minimumTime(_ nums1: [Int], _ nums2: [Int], _ x: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minimumTime(nums1: List, nums2: List, x: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int minimumTime(List nums1, List nums2, int x) {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minimumTime(nums1 []int, nums2 []int, x int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums1\n# @param {Integer[]} nums2\n# @param {Integer} x\n# @return {Integer}\ndef minimum_time(nums1, nums2, x)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minimumTime(nums1: List[Int], nums2: List[Int], x: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn minimum_time(nums1: Vec, nums2: Vec, x: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (minimum-time nums1 nums2 x)\n (-> (listof exact-integer?) (listof exact-integer?) exact-integer? exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec minimum_time(Nums1 :: [integer()], Nums2 :: [integer()], X :: integer()) -> integer().\nminimum_time(Nums1, Nums2, X) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec minimum_time(nums1 :: [integer], nums2 :: [integer], x :: integer) :: integer\n def minimum_time(nums1, nums2, x) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"3K\", \"totalSubmission\": \"12.4K\", \"totalAcceptedRaw\": 2966, \"totalSubmissionRaw\": 12449, \"acRate\": \"23.8%\"}", "hints": [ "
It can be proven that in the optimal solution, for each index i, we only need to set nums1[i] to 0 at most once. (If we have to set it twice, we can simply remove the earlier set and all the operations “shift left” by 1.)
", "
It can also be proven that if we select several indexes i1, i2, ..., ik and set nums1[i1], nums1[i2], ..., nums1[ik] to 0, it’s always optimal to set them in the order of nums2[i1] <= nums2[i2] <= ... <= nums2[ik] (the larger the increase is, the later we should set it to 0).
", "
Let’s sort all the values by nums2 (in non-decreasing order). Let dp[i][j] represent the maximum total value that can be reduced if we do j operations on the first i elements. Then we have dp[i][0] = 0 (for all i = 0, 1, ..., n) and dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1] + nums2[i - 1] * j + nums1[i - 1]) (for 1 <= i <= n and 1 <= j <= i).
", "
The answer is the minimum value of t, such that 0 <= t <= n and sum(nums1) + sum(nums2) * t - dp[n][t] <= x, or -1 if it doesn’t exist.
" ], "solution": null, "status": null, "sampleTestCase": "[1,2,3]\n[1,2,3]\n4", "metaData": "{\n \"name\": \"minimumTime\",\n \"params\": [\n {\n \"name\": \"nums1\",\n \"type\": \"list\"\n },\n {\n \"type\": \"list\",\n \"name\": \"nums2\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"x\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }