{ "data": { "question": { "questionId": "1394", "questionFrontendId": "2304", "boundTopicId": null, "title": "Minimum Path Cost in a Grid", "titleSlug": "minimum-path-cost-in-a-grid", "content": "

You are given a 0-indexed m x n integer matrix grid consisting of distinct integers from 0 to m * n - 1. You can move in this matrix from a cell to any other cell in the next row. That is, if you are in cell (x, y) such that x < m - 1, you can move to any of the cells (x + 1, 0), (x + 1, 1), ..., (x + 1, n - 1). Note that it is not possible to move from cells in the last row.

\n\n

Each possible move has a cost given by a 0-indexed 2D array moveCost of size (m * n) x n, where moveCost[i][j] is the cost of moving from a cell with value i to a cell in column j of the next row. The cost of moving from cells in the last row of grid can be ignored.

\n\n

The cost of a path in grid is the sum of all values of cells visited plus the sum of costs of all the moves made. Return the minimum cost of a path that starts from any cell in the first row and ends at any cell in the last row.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]\nOutput: 17\nExplanation: The path with the minimum possible cost is the path 5 -> 0 -> 1.\n- The sum of the values of cells visited is 5 + 0 + 1 = 6.\n- The cost of moving from 5 to 0 is 3.\n- The cost of moving from 0 to 1 is 8.\nSo the total cost of the path is 6 + 3 + 8 = 17.\n
\n\n

Example 2:

\n\n
\nInput: grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]\nOutput: 6\nExplanation: The path with the minimum possible cost is the path 2 -> 3.\n- The sum of the values of cells visited is 2 + 3 = 5.\n- The cost of moving from 2 to 3 is 1.\nSo the total cost of this path is 5 + 1 = 6.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 820, "dislikes": 139, "isLiked": null, "similarQuestions": "[{\"title\": \"Unique Paths\", \"titleSlug\": \"unique-paths\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Unique Paths II\", \"titleSlug\": \"unique-paths-ii\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Minimum Path Sum\", \"titleSlug\": \"minimum-path-sum\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Dungeon Game\", \"titleSlug\": \"dungeon-game\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Paint House\", \"titleSlug\": \"paint-house\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[[5,3],[4,0],[2,1]]\n[[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]\n[[5,1,2],[4,0,3]]\n[[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Matrix", "slug": "matrix", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minPathCost(vector>& grid, vector>& moveCost) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int minPathCost(int[][] grid, int[][] moveCost) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minPathCost(self, grid, moveCost):\n \"\"\"\n :type grid: List[List[int]]\n :type moveCost: List[List[int]]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int minPathCost(int** grid, int gridSize, int* gridColSize, int** moveCost, int moveCostSize, int* moveCostColSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MinPathCost(int[][] grid, int[][] moveCost) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[][]} grid\n * @param {number[][]} moveCost\n * @return {number}\n */\nvar minPathCost = function(grid, moveCost) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minPathCost(grid: number[][], moveCost: number[][]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[][] $grid\n * @param Integer[][] $moveCost\n * @return Integer\n */\n function minPathCost($grid, $moveCost) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minPathCost(_ grid: [[Int]], _ moveCost: [[Int]]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minPathCost(grid: Array, moveCost: Array): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int minPathCost(List> grid, List> moveCost) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minPathCost(grid [][]int, moveCost [][]int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[][]} grid\n# @param {Integer[][]} move_cost\n# @return {Integer}\ndef min_path_cost(grid, move_cost)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minPathCost(grid: Array[Array[Int]], moveCost: Array[Array[Int]]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn min_path_cost(grid: Vec>, move_cost: Vec>) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (min-path-cost grid moveCost)\n (-> (listof (listof exact-integer?)) (listof (listof exact-integer?)) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec min_path_cost(Grid :: [[integer()]], MoveCost :: [[integer()]]) -> integer().\nmin_path_cost(Grid, MoveCost) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec min_path_cost(grid :: [[integer]], move_cost :: [[integer]]) :: integer\n def min_path_cost(grid, move_cost) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"26.7K\", \"totalSubmission\": \"40.4K\", \"totalAcceptedRaw\": 26680, \"totalSubmissionRaw\": 40376, \"acRate\": \"66.1%\"}", "hints": [ "What is the optimal cost to get to each of the cells in the second row? What about the third row?", "Use dynamic programming to compute the optimal cost to get to each cell." ], "solution": null, "status": null, "sampleTestCase": "[[5,3],[4,0],[2,1]]\n[[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]", "metaData": "{\n \"name\": \"minPathCost\",\n \"params\": [\n {\n \"name\": \"grid\",\n \"type\": \"integer[][]\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"moveCost\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }