{ "data": { "question": { "questionId": "2718", "questionFrontendId": "2602", "boundTopicId": null, "title": "Minimum Operations to Make All Array Elements Equal", "titleSlug": "minimum-operations-to-make-all-array-elements-equal", "content": "

You are given an array nums consisting of positive integers.

\n\n

You are also given an integer array queries of size m. For the ith query, you want to make all of the elements of nums equal to queries[i]. You can perform the following operation on the array any number of times:

\n\n\n\n

Return an array answer of size m where answer[i] is the minimum number of operations to make all elements of nums equal to queries[i].

\n\n

Note that after each query the array is reset to its original state.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums = [3,1,6,8], queries = [1,5]\nOutput: [14,10]\nExplanation: For the first query we can do the following operations:\n- Decrease nums[0] 2 times, so that nums = [1,1,6,8].\n- Decrease nums[2] 5 times, so that nums = [1,1,1,8].\n- Decrease nums[3] 7 times, so that nums = [1,1,1,1].\nSo the total number of operations for the first query is 2 + 5 + 7 = 14.\nFor the second query we can do the following operations:\n- Increase nums[0] 2 times, so that nums = [5,1,6,8].\n- Increase nums[1] 4 times, so that nums = [5,5,6,8].\n- Decrease nums[2] 1 time, so that nums = [5,5,5,8].\n- Decrease nums[3] 3 times, so that nums = [5,5,5,5].\nSo the total number of operations for the second query is 2 + 4 + 1 + 3 = 10.\n
\n\n

Example 2:

\n\n
\nInput: nums = [2,9,6,3], queries = [10]\nOutput: [20]\nExplanation: We can increase each value in the array to 10. The total number of operations will be 8 + 1 + 4 + 7 = 20.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 626, "dislikes": 16, "isLiked": null, "similarQuestions": "[{\"title\": \"Minimum Moves to Equal Array Elements II\", \"titleSlug\": \"minimum-moves-to-equal-array-elements-ii\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Minimum Cost to Make Array Equal\", \"titleSlug\": \"minimum-cost-to-make-array-equal\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Sum of Distances\", \"titleSlug\": \"sum-of-distances\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[3,1,6,8]\n[1,5]\n[2,9,6,3]\n[10]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Search", "slug": "binary-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Prefix Sum", "slug": "prefix-sum", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector minOperations(vector& nums, vector& queries) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public List minOperations(int[] nums, int[] queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minOperations(self, nums, queries):\n \"\"\"\n :type nums: List[int]\n :type queries: List[int]\n :rtype: List[int]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minOperations(self, nums: List[int], queries: List[int]) -> List[int]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nlong long* minOperations(int* nums, int numsSize, int* queries, int queriesSize, int* returnSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public IList MinOperations(int[] nums, int[] queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @param {number[]} queries\n * @return {number[]}\n */\nvar minOperations = function(nums, queries) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minOperations(nums: number[], queries: number[]): number[] {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @param Integer[] $queries\n * @return Integer[]\n */\n function minOperations($nums, $queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minOperations(_ nums: [Int], _ queries: [Int]) -> [Int] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minOperations(nums: IntArray, queries: IntArray): List {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n List minOperations(List nums, List queries) {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minOperations(nums []int, queries []int) []int64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @param {Integer[]} queries\n# @return {Integer[]}\ndef min_operations(nums, queries)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minOperations(nums: Array[Int], queries: Array[Int]): List[Long] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn min_operations(nums: Vec, queries: Vec) -> Vec {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (min-operations nums queries)\n (-> (listof exact-integer?) (listof exact-integer?) (listof exact-integer?))\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec min_operations(Nums :: [integer()], Queries :: [integer()]) -> [integer()].\nmin_operations(Nums, Queries) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec min_operations(nums :: [integer], queries :: [integer]) :: [integer]\n def min_operations(nums, queries) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"14.8K\", \"totalSubmission\": \"42.9K\", \"totalAcceptedRaw\": 14846, \"totalSubmissionRaw\": 42865, \"acRate\": \"34.6%\"}", "hints": [ "For each query, you should decrease all elements greater than queries[i] and increase all elements less than queries[i].", "The answer is the sum of absolute differences between queries[i] and every element of the array. How do you calculate that optimally?" ], "solution": null, "status": null, "sampleTestCase": "[3,1,6,8]\n[1,5]", "metaData": "{\n \"name\": \"minOperations\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"queries\"\n }\n ],\n \"return\": {\n \"type\": \"list\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }