{ "data": { "question": { "questionId": "3423", "questionFrontendId": "3165", "boundTopicId": null, "title": "Maximum Sum of Subsequence With Non-adjacent Elements", "titleSlug": "maximum-sum-of-subsequence-with-non-adjacent-elements", "content": "

You are given an array nums consisting of integers. You are also given a 2D array queries, where queries[i] = [posi, xi].

\n\n

For query i, we first set nums[posi] equal to xi, then we calculate the answer to query i which is the maximum sum of a subsequence of nums where no two adjacent elements are selected.

\n\n

Return the sum of the answers to all queries.

\n\n

Since the final answer may be very large, return it modulo 109 + 7.

\n\n

A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.

\n\n

 

\n

Example 1:

\n\n
\n

Input: nums = [3,5,9], queries = [[1,-2],[0,-3]]

\n\n

Output: 21

\n\n

Explanation:
\nAfter the 1st query, nums = [3,-2,9] and the maximum sum of a subsequence with non-adjacent elements is 3 + 9 = 12.
\nAfter the 2nd query, nums = [-3,-2,9] and the maximum sum of a subsequence with non-adjacent elements is 9.

\n
\n\n

Example 2:

\n\n
\n

Input: nums = [0,-1], queries = [[0,-5]]

\n\n

Output: 0

\n\n

Explanation:
\nAfter the 1st query, nums = [-5,-1] and the maximum sum of a subsequence with non-adjacent elements is 0 (choosing an empty subsequence).

\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 90, "dislikes": 23, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[3,5,9]\n[[1,-2],[0,-3]]\n[0,-1]\n[[0,-5]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Divide and Conquer", "slug": "divide-and-conquer", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Segment Tree", "slug": "segment-tree", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int maximumSumSubsequence(vector& nums, vector>& queries) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int maximumSumSubsequence(int[] nums, int[][] queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maximumSumSubsequence(self, nums, queries):\n \"\"\"\n :type nums: List[int]\n :type queries: List[List[int]]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maximumSumSubsequence(self, nums: List[int], queries: List[List[int]]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int maximumSumSubsequence(int* nums, int numsSize, int** queries, int queriesSize, int* queriesColSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MaximumSumSubsequence(int[] nums, int[][] queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @param {number[][]} queries\n * @return {number}\n */\nvar maximumSumSubsequence = function(nums, queries) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maximumSumSubsequence(nums: number[], queries: number[][]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @param Integer[][] $queries\n * @return Integer\n */\n function maximumSumSubsequence($nums, $queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maximumSumSubsequence(_ nums: [Int], _ queries: [[Int]]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maximumSumSubsequence(nums: IntArray, queries: Array): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int maximumSumSubsequence(List nums, List> queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maximumSumSubsequence(nums []int, queries [][]int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @param {Integer[][]} queries\n# @return {Integer}\ndef maximum_sum_subsequence(nums, queries)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maximumSumSubsequence(nums: Array[Int], queries: Array[Array[Int]]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn maximum_sum_subsequence(nums: Vec, queries: Vec>) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (maximum-sum-subsequence nums queries)\n (-> (listof exact-integer?) (listof (listof exact-integer?)) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec maximum_sum_subsequence(Nums :: [integer()], Queries :: [[integer()]]) -> integer().\nmaximum_sum_subsequence(Nums, Queries) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec maximum_sum_subsequence(nums :: [integer], queries :: [[integer]]) :: integer\n def maximum_sum_subsequence(nums, queries) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"5.2K\", \"totalSubmission\": \"29.5K\", \"totalAcceptedRaw\": 5218, \"totalSubmissionRaw\": 29500, \"acRate\": \"17.7%\"}", "hints": [ "Can you solve each query in O(nums.length) with dynamic programming?", "In order to optimize, we will use segment tree where each node contains the maximum value of (front element has been chosen or not, back element has been chosen or not)." ], "solution": null, "status": null, "sampleTestCase": "[3,5,9]\n[[1,-2],[0,-3]]", "metaData": "{\n \"name\": \"maximumSumSubsequence\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"queries\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 17 using the latest C++ 20 standard, and libstdc++ provided by GCC 11.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 21. Using compile arguments: --enable-preview --release 21

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 11 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 12 with .NET 8 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 20.10.0.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.2

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.9.

\\r\\n\\r\\n

You may use swift-algorithms 1.2.0 and swift-collections 1.1.0.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1 and https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha library.

\"], \"python3\": [\"Python3\", \"

Python 3.11.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 3.3.1.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\\r\\n\\r\\n

We are using an experimental compiler provided by JetBrains.

\"], \"rust\": [\"Rust\", \"

Rust 1.74.1. Your code will be compiled with opt-level 2.

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.2.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 20.10.0.

\\r\\n\\r\\n

Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Racket CS v8.11

\\r\\n\\r\\n

Using #lang racket

\\r\\n\\r\\n

Required data/gvector data/queue data/order data/heap automatically for your convenience

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 26\"], \"elixir\": [\"Elixir\", \"Elixir 1.15 with Erlang/OTP 26\"], \"dart\": [\"Dart\", \"

Dart 3.2. You may use package collection

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }