{ "data": { "question": { "questionId": "2068", "questionFrontendId": "1938", "boundTopicId": null, "title": "Maximum Genetic Difference Query", "titleSlug": "maximum-genetic-difference-query", "content": "

There is a rooted tree consisting of n nodes numbered 0 to n - 1. Each node's number denotes its unique genetic value (i.e. the genetic value of node x is x). The genetic difference between two genetic values is defined as the bitwise-XOR of their values. You are given the integer array parents, where parents[i] is the parent for node i. If node x is the root of the tree, then parents[x] == -1.

\n\n

You are also given the array queries where queries[i] = [nodei, vali]. For each query i, find the maximum genetic difference between vali and pi, where pi is the genetic value of any node that is on the path between nodei and the root (including nodei and the root). More formally, you want to maximize vali XOR pi.

\n\n

Return an array ans where ans[i] is the answer to the ith query.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: parents = [-1,0,1,1], queries = [[0,2],[3,2],[2,5]]\nOutput: [2,3,7]\nExplanation: The queries are processed as follows:\n- [0,2]: The node with the maximum genetic difference is 0, with a difference of 2 XOR 0 = 2.\n- [3,2]: The node with the maximum genetic difference is 1, with a difference of 2 XOR 1 = 3.\n- [2,5]: The node with the maximum genetic difference is 2, with a difference of 5 XOR 2 = 7.\n
\n\n

Example 2:

\n\"\"\n
\nInput: parents = [3,7,-1,2,0,7,0,2], queries = [[4,6],[1,15],[0,5]]\nOutput: [6,14,7]\nExplanation: The queries are processed as follows:\n- [4,6]: The node with the maximum genetic difference is 0, with a difference of 6 XOR 0 = 6.\n- [1,15]: The node with the maximum genetic difference is 1, with a difference of 15 XOR 1 = 14.\n- [0,5]: The node with the maximum genetic difference is 2, with a difference of 5 XOR 2 = 7.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 368, "dislikes": 18, "isLiked": null, "similarQuestions": "[{\"title\": \"Maximum XOR With an Element From Array\", \"titleSlug\": \"maximum-xor-with-an-element-from-array\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[-1,0,1,1]\n[[0,2],[3,2],[2,5]]\n[3,7,-1,2,0,7,0,2]\n[[4,6],[1,15],[0,5]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Bit Manipulation", "slug": "bit-manipulation", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Trie", "slug": "trie", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector maxGeneticDifference(vector& parents, vector>& queries) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int[] maxGeneticDifference(int[] parents, int[][] queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maxGeneticDifference(self, parents, queries):\n \"\"\"\n :type parents: List[int]\n :type queries: List[List[int]]\n :rtype: List[int]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maxGeneticDifference(self, parents: List[int], queries: List[List[int]]) -> List[int]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* maxGeneticDifference(int* parents, int parentsSize, int** queries, int queriesSize, int* queriesColSize, int* returnSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int[] MaxGeneticDifference(int[] parents, int[][] queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} parents\n * @param {number[][]} queries\n * @return {number[]}\n */\nvar maxGeneticDifference = function(parents, queries) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maxGeneticDifference(parents: number[], queries: number[][]): number[] {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $parents\n * @param Integer[][] $queries\n * @return Integer[]\n */\n function maxGeneticDifference($parents, $queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maxGeneticDifference(_ parents: [Int], _ queries: [[Int]]) -> [Int] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maxGeneticDifference(parents: IntArray, queries: Array): IntArray {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n List maxGeneticDifference(List parents, List> queries) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maxGeneticDifference(parents []int, queries [][]int) []int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} parents\n# @param {Integer[][]} queries\n# @return {Integer[]}\ndef max_genetic_difference(parents, queries)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maxGeneticDifference(parents: Array[Int], queries: Array[Array[Int]]): Array[Int] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn max_genetic_difference(parents: Vec, queries: Vec>) -> Vec {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (max-genetic-difference parents queries)\n (-> (listof exact-integer?) (listof (listof exact-integer?)) (listof exact-integer?))\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec max_genetic_difference(Parents :: [integer()], Queries :: [[integer()]]) -> [integer()].\nmax_genetic_difference(Parents, Queries) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec max_genetic_difference(parents :: [integer], queries :: [[integer]]) :: [integer]\n def max_genetic_difference(parents, queries) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"5K\", \"totalSubmission\": \"12K\", \"totalAcceptedRaw\": 5022, \"totalSubmissionRaw\": 12014, \"acRate\": \"41.8%\"}", "hints": [ "How can we use a trie to store all the XOR values in the path from a node to the root?", "How can we dynamically add the XOR values with a DFS search?" ], "solution": null, "status": null, "sampleTestCase": "[-1,0,1,1]\n[[0,2],[3,2],[2,5]]", "metaData": "{\n \"name\": \"maxGeneticDifference\",\n \"params\": [\n {\n \"name\": \"parents\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"queries\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }