{ "data": { "question": { "questionId": "3391", "questionFrontendId": "3148", "boundTopicId": null, "title": "Maximum Difference Score in a Grid", "titleSlug": "maximum-difference-score-in-a-grid", "content": "
You are given an m x n
matrix grid
consisting of positive integers. You can move from a cell in the matrix to any other cell that is either to the bottom or to the right (not necessarily adjacent). The score of a move from a cell with the value c1
to a cell with the value c2
is c2 - c1
.
You can start at any cell, and you have to make at least one move.
\n\nReturn the maximum total score you can achieve.
\n\n\n
Example 1:
\n\nInput: grid = [[9,5,7,3],[8,9,6,1],[6,7,14,3],[2,5,3,1]]
\n\nOutput: 9
\n\nExplanation: We start at the cell (0, 1)
, and we perform the following moves:
\n- Move from the cell (0, 1)
to (2, 1)
with a score of 7 - 5 = 2
.
\n- Move from the cell (2, 1)
to (2, 2)
with a score of 14 - 7 = 7
.
\nThe total score is 2 + 7 = 9
.
Example 2:
\n\n\n\nInput: grid = [[4,3,2],[3,2,1]]
\n\nOutput: -1
\n\nExplanation: We start at the cell (0, 0)
, and we perform one move: (0, 0)
to (0, 1)
. The score is 3 - 4 = -1
.
\n
Constraints:
\n\nm == grid.length
n == grid[i].length
2 <= m, n <= 1000
4 <= m * n <= 105
1 <= grid[i][j] <= 105
(x1, y1)
to another cell (x2, y2)
will always have a score of grid[x2][y2] - grid[x1][y1]
.",
"Let’s say we fix the starting cell (x1, y1)
, how to the find a cell (x2, y2)
such that the value grid[x2][y2] - grid[x1][y1]
is the maximum possible?"
],
"solution": null,
"status": null,
"sampleTestCase": "[[9,5,7,3],[8,9,6,1],[6,7,14,3],[2,5,3,1]]",
"metaData": "{\n \"name\": \"maxScore\",\n \"params\": [\n {\n \"name\": \"grid\",\n \"type\": \"listCompiled with clang 17
using the latest C++ 20 standard, and libstdc++
provided by GCC 11.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 21
. Using compile arguments: --enable-preview --release 21
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 11
using the gnu11 standard.
Your code is compiled with level one optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"
C# 12 with .NET 8 runtime
\"], \"javascript\": [\"JavaScript\", \"Node.js 20.10.0
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.2
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.9
.
You may use swift-algorithms 1.2.0 and swift-collections 1.1.0.
\"], \"golang\": [\"Go\", \"Go 1.21
Support https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1 and https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha library.
\"], \"python3\": [\"Python3\", \"Python 3.11
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 3.3.1
.
Kotlin 1.9.0
.
We are using an experimental compiler provided by JetBrains.
\"], \"rust\": [\"Rust\", \"Rust 1.74.1
. Your code will be compiled with opt-level
2.
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.2
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 20.10.0
.
Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Racket CS v8.11
\\r\\n\\r\\nUsing #lang racket
Required data/gvector data/queue data/order data/heap
automatically for your convenience
Dart 3.2. You may use package collection
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }