{ "data": { "question": { "questionId": "3464", "questionFrontendId": "3196", "boundTopicId": null, "title": "Maximize Total Cost of Alternating Subarrays", "titleSlug": "maximize-total-cost-of-alternating-subarrays", "content": "

You are given an integer array nums with length n.

\n\n

The cost of a subarray nums[l..r], where 0 <= l <= r < n, is defined as:

\n\n

cost(l, r) = nums[l] - nums[l + 1] + ... + nums[r] * (−1)r − l

\n\n

Your task is to split nums into subarrays such that the total cost of the subarrays is maximized, ensuring each element belongs to exactly one subarray.

\n\n

Formally, if nums is split into k subarrays, where k > 1, at indices i1, i2, ..., ik − 1, where 0 <= i1 < i2 < ... < ik - 1 < n - 1, then the total cost will be:

\n\n

cost(0, i1) + cost(i1 + 1, i2) + ... + cost(ik − 1 + 1, n − 1)

\n\n

Return an integer denoting the maximum total cost of the subarrays after splitting the array optimally.

\n\n

Note: If nums is not split into subarrays, i.e. k = 1, the total cost is simply cost(0, n - 1).

\n\n

 

\n

Example 1:

\n\n
\n

Input: nums = [1,-2,3,4]

\n\n

Output: 10

\n\n

Explanation:

\n\n

One way to maximize the total cost is by splitting [1, -2, 3, 4] into subarrays [1, -2, 3] and [4]. The total cost will be (1 + 2 + 3) + 4 = 10.

\n
\n\n

Example 2:

\n\n
\n

Input: nums = [1,-1,1,-1]

\n\n

Output: 4

\n\n

Explanation:

\n\n

One way to maximize the total cost is by splitting [1, -1, 1, -1] into subarrays [1, -1] and [1, -1]. The total cost will be (1 + 1) + (1 + 1) = 4.

\n
\n\n

Example 3:

\n\n
\n

Input: nums = [0]

\n\n

Output: 0

\n\n

Explanation:

\n\n

We cannot split the array further, so the answer is 0.

\n
\n\n

Example 4:

\n\n
\n

Input: nums = [1,-1]

\n\n

Output: 2

\n\n

Explanation:

\n\n

Selecting the whole array gives a total cost of 1 + 1 = 2, which is the maximum.

\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 93, "dislikes": 17, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[1,-2,3,4]\n[1,-1,1,-1]\n[0]\n[1,-1]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n long long maximumTotalCost(vector& nums) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public long maximumTotalCost(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maximumTotalCost(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maximumTotalCost(self, nums: List[int]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "long long maximumTotalCost(int* nums, int numsSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public long MaximumTotalCost(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @return {number}\n */\nvar maximumTotalCost = function(nums) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maximumTotalCost(nums: number[]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @return Integer\n */\n function maximumTotalCost($nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maximumTotalCost(_ nums: [Int]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maximumTotalCost(nums: IntArray): Long {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int maximumTotalCost(List nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maximumTotalCost(nums []int) int64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @return {Integer}\ndef maximum_total_cost(nums)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maximumTotalCost(nums: Array[Int]): Long = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn maximum_total_cost(nums: Vec) -> i64 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (maximum-total-cost nums)\n (-> (listof exact-integer?) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec maximum_total_cost(Nums :: [integer()]) -> integer().\nmaximum_total_cost(Nums) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec maximum_total_cost(nums :: [integer]) :: integer\n def maximum_total_cost(nums) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"14.7K\", \"totalSubmission\": \"57.7K\", \"totalAcceptedRaw\": 14723, \"totalSubmissionRaw\": 57727, \"acRate\": \"25.5%\"}", "hints": [ "The problem can be solved using dynamic programming.", "Since we can always start a new subarray, the problem is the same as selecting some elements in the array and flipping their signs to negative to maximize the sum. However, we cannot flip the signs of 2 consecutive elements, and the first element in the array cannot be negative.", "Let dp[i][0/1] be the largest sum we can get for prefix nums[0..i], where dp[i][0] is the maximum if the ith element wasn't flipped, and dp[i][1] is the maximum if the ith element was flipped.", "Based on the restriction:
\r\ndp[i][0] = min(dp[i - 1][0], dp[i - 1][1]) + nums[i]
\r\ndp[i][1] = dp[i - 1][0] - nums[i]", "The initial state is:
\r\ndp[1][0] = nums[0] + nums[1]
\r\ndp[1][1] = nums[0] - nums[1]
\r\nand the answer is max(dp[n - 1][0], dp[n - 1][1]).", "Can you optimize the space complexity?" ], "solution": null, "status": null, "sampleTestCase": "[1,-2,3,4]", "metaData": "{\n \"name\": \"maximumTotalCost\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n }\n ],\n \"return\": {\n \"type\": \"long\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 17 using the latest C++ 20 standard, and libstdc++ provided by GCC 11.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 21. Using compile arguments: --enable-preview --release 21

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 11 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 12 with .NET 8 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 20.10.0.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.2

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.9.

\\r\\n\\r\\n

You may use swift-algorithms 1.2.0 and swift-collections 1.1.0.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1 and https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha library.

\"], \"python3\": [\"Python3\", \"

Python 3.11.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 3.3.1.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\\r\\n\\r\\n

We are using an experimental compiler provided by JetBrains.

\"], \"rust\": [\"Rust\", \"

Rust 1.74.1. Your code will be compiled with opt-level 2.

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.2.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 20.10.0.

\\r\\n\\r\\n

Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Racket CS v8.11

\\r\\n\\r\\n

Using #lang racket

\\r\\n\\r\\n

Required data/gvector data/queue data/order data/heap automatically for your convenience

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 26\"], \"elixir\": [\"Elixir\", \"Elixir 1.15 with Erlang/OTP 26\"], \"dart\": [\"Dart\", \"

Dart 3.2. You may use package collection

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }