{ "data": { "question": { "questionId": "1677", "questionFrontendId": "1572", "boundTopicId": null, "title": "Matrix Diagonal Sum", "titleSlug": "matrix-diagonal-sum", "content": "

Given a square matrix mat, return the sum of the matrix diagonals.

\n\n

Only include the sum of all the elements on the primary diagonal and all the elements on the secondary diagonal that are not part of the primary diagonal.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: mat = [[1,2,3],\n              [4,5,6],\n              [7,8,9]]\nOutput: 25\nExplanation: Diagonals sum: 1 + 5 + 9 + 3 + 7 = 25\nNotice that element mat[1][1] = 5 is counted only once.\n
\n\n

Example 2:

\n\n
\nInput: mat = [[1,1,1,1],\n              [1,1,1,1],\n              [1,1,1,1],\n              [1,1,1,1]]\nOutput: 8\n
\n\n

Example 3:

\n\n
\nInput: mat = [[5]]\nOutput: 5\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 3319, "dislikes": 46, "isLiked": null, "similarQuestions": "[{\"title\": \"Check if Every Row and Column Contains All Numbers\", \"titleSlug\": \"check-if-every-row-and-column-contains-all-numbers\", \"difficulty\": \"Easy\", \"translatedTitle\": null}, {\"title\": \"Check if Matrix Is X-Matrix\", \"titleSlug\": \"check-if-matrix-is-x-matrix\", \"difficulty\": \"Easy\", \"translatedTitle\": null}]", "exampleTestcases": "[[1,2,3],[4,5,6],[7,8,9]]\n[[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1]]\n[[5]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Matrix", "slug": "matrix", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int diagonalSum(vector>& mat) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int diagonalSum(int[][] mat) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def diagonalSum(self, mat):\n \"\"\"\n :type mat: List[List[int]]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def diagonalSum(self, mat: List[List[int]]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int diagonalSum(int** mat, int matSize, int* matColSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int DiagonalSum(int[][] mat) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[][]} mat\n * @return {number}\n */\nvar diagonalSum = function(mat) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function diagonalSum(mat: number[][]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[][] $mat\n * @return Integer\n */\n function diagonalSum($mat) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func diagonalSum(_ mat: [[Int]]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun diagonalSum(mat: Array): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int diagonalSum(List> mat) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func diagonalSum(mat [][]int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[][]} mat\n# @return {Integer}\ndef diagonal_sum(mat)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def diagonalSum(mat: Array[Array[Int]]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn diagonal_sum(mat: Vec>) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (diagonal-sum mat)\n (-> (listof (listof exact-integer?)) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec diagonal_sum(Mat :: [[integer()]]) -> integer().\ndiagonal_sum(Mat) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec diagonal_sum(mat :: [[integer]]) :: integer\n def diagonal_sum(mat) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"315.1K\", \"totalSubmission\": \"381.1K\", \"totalAcceptedRaw\": 315139, \"totalSubmissionRaw\": 381097, \"acRate\": \"82.7%\"}", "hints": [ "There will be overlap of elements in the primary and secondary diagonals if and only if the length of the matrix is odd, which is at the center." ], "solution": { "id": "1829", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "[[1,2,3],[4,5,6],[7,8,9]]", "metaData": "{\n \"name\": \"diagonalSum\",\n \"params\": [\n {\n \"name\": \"mat\",\n \"type\": \"integer[][]\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": { "id": "1331", "date": "2023-05-08", "incompleteChallengeCount": 0, "streakCount": 0, "type": "DAILY", "__typename": "ChallengeQuestionNode" }, "__typename": "QuestionNode" } } }