{ "data": { "question": { "questionId": "3346", "questionFrontendId": "3106", "boundTopicId": null, "title": "Lexicographically Smallest String After Operations With Constraint", "titleSlug": "lexicographically-smallest-string-after-operations-with-constraint", "content": "
You are given a string s
and an integer k
.
Define a function distance(s1, s2)
between two strings s1
and s2
of the same length n
as:
s1[i]
and s2[i]
when the characters from 'a'
to 'z'
are placed in a cyclic order, for all i
in the range [0, n - 1]
.For example, distance("ab", "cd") == 4
, and distance("a", "z") == 1
.
You can change any letter of s
to any other lowercase English letter, any number of times.
Return a string denoting the lexicographically smallest string t
you can get after some changes, such that distance(s, t) <= k
.
\n
Example 1:
\n\nInput: s = "zbbz", k = 3
\n\nOutput: "aaaz"
\n\nExplanation:
\n\nChange s
to "aaaz"
. The distance between "zbbz"
and "aaaz"
is equal to k = 3
.
Example 2:
\n\nInput: s = "xaxcd", k = 4
\n\nOutput: "aawcd"
\n\nExplanation:
\n\nThe distance between "xaxcd" and "aawcd" is equal to k = 4.
\nExample 3:
\n\nInput: s = "lol", k = 0
\n\nOutput: "lol"
\n\nExplanation:
\n\nIt's impossible to change any character as k = 0
.
\n
Constraints:
\n\n1 <= s.length <= 100
0 <= k <= 2000
s
consists only of lowercase English letters.0
to n - 1
, we try all letters from 'a'
to 'z'
, selecting the first one as long as the current total distance accumulated is not larger than k
."
],
"solution": null,
"status": null,
"sampleTestCase": "\"zbbz\"\n3",
"metaData": "{\n \"name\": \"getSmallestString\",\n \"params\": [\n {\n \"name\": \"s\",\n \"type\": \"string\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k\"\n }\n ],\n \"return\": {\n \"type\": \"string\"\n }\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": true,
"envInfo": "{\"cpp\": [\"C++\", \"Compiled with clang 17
using the latest C++ 20 standard, and libstdc++
provided by GCC 11.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 21
. Using compile arguments: --enable-preview --release 21
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 11
using the gnu11 standard.
Your code is compiled with level one optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"
C# 12 with .NET 8 runtime
\"], \"javascript\": [\"JavaScript\", \"Node.js 20.10.0
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.2
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.9
.
You may use swift-algorithms 1.2.0 and swift-collections 1.0.6.
\"], \"golang\": [\"Go\", \"Go 1.21
Support https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1 and https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha library.
\"], \"python3\": [\"Python3\", \"Python 3.11
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 3.3.1
.
Kotlin 1.9.0
.
We are using an experimental compiler provided by JetBrains.
\"], \"rust\": [\"Rust\", \"Rust 1.74.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.2
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 20.10.0
.
Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Racket CS v8.11
\\r\\n\\r\\nUsing #lang racket
Required data/gvector data/queue data/order data/heap
automatically for your convenience
Dart 3.2
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }