{ "data": { "question": { "questionId": "884", "questionFrontendId": "854", "boundTopicId": null, "title": "K-Similar Strings", "titleSlug": "k-similar-strings", "content": "

Strings s1 and s2 are k-similar (for some non-negative integer k) if we can swap the positions of two letters in s1 exactly k times so that the resulting string equals s2.

\n\n

Given two anagrams s1 and s2, return the smallest k for which s1 and s2 are k-similar.

\n\n

 

\n

Example 1:

\n\n
\nInput: s1 = "ab", s2 = "ba"\nOutput: 1\nExplanation: The two string are 1-similar because we can use one swap to change s1 to s2: "ab" --> "ba".\n
\n\n

Example 2:

\n\n
\nInput: s1 = "abc", s2 = "bca"\nOutput: 2\nExplanation: The two strings are 2-similar because we can use two swaps to change s1 to s2: "abc" --> "bac" --> "bca".\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 1098, "dislikes": 59, "isLiked": null, "similarQuestions": "[{\"title\": \"Couples Holding Hands\", \"titleSlug\": \"couples-holding-hands\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "\"ab\"\n\"ba\"\n\"abc\"\n\"bca\"", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "String", "slug": "string", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Breadth-First Search", "slug": "breadth-first-search", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int kSimilarity(string s1, string s2) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int kSimilarity(String s1, String s2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def kSimilarity(self, s1, s2):\n \"\"\"\n :type s1: str\n :type s2: str\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def kSimilarity(self, s1: str, s2: str) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int kSimilarity(char* s1, char* s2) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int KSimilarity(string s1, string s2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {string} s1\n * @param {string} s2\n * @return {number}\n */\nvar kSimilarity = function(s1, s2) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function kSimilarity(s1: string, s2: string): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param String $s1\n * @param String $s2\n * @return Integer\n */\n function kSimilarity($s1, $s2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func kSimilarity(_ s1: String, _ s2: String) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun kSimilarity(s1: String, s2: String): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int kSimilarity(String s1, String s2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func kSimilarity(s1 string, s2 string) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {String} s1\n# @param {String} s2\n# @return {Integer}\ndef k_similarity(s1, s2)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def kSimilarity(s1: String, s2: String): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn k_similarity(s1: String, s2: String) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (k-similarity s1 s2)\n (-> string? string? exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec k_similarity(S1 :: unicode:unicode_binary(), S2 :: unicode:unicode_binary()) -> integer().\nk_similarity(S1, S2) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec k_similarity(s1 :: String.t, s2 :: String.t) :: integer\n def k_similarity(s1, s2) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"43.7K\", \"totalSubmission\": \"109.7K\", \"totalAcceptedRaw\": 43691, \"totalSubmissionRaw\": 109740, \"acRate\": \"39.8%\"}", "hints": [], "solution": null, "status": null, "sampleTestCase": "\"ab\"\n\"ba\"", "metaData": "{\n \"name\": \"kSimilarity\",\n \"params\": [\n {\n \"name\": \"s1\",\n \"type\": \"string\"\n },\n {\n \"name\": \"s2\",\n \"type\": \"string\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }