{ "data": { "question": { "questionId": "1711", "questionFrontendId": "1605", "boundTopicId": null, "title": "Find Valid Matrix Given Row and Column Sums", "titleSlug": "find-valid-matrix-given-row-and-column-sums", "content": "

You are given two arrays rowSum and colSum of non-negative integers where rowSum[i] is the sum of the elements in the ith row and colSum[j] is the sum of the elements of the jth column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.

\n\n

Find any matrix of non-negative integers of size rowSum.length x colSum.length that satisfies the rowSum and colSum requirements.

\n\n

Return a 2D array representing any matrix that fulfills the requirements. It's guaranteed that at least one matrix that fulfills the requirements exists.

\n\n

 

\n

Example 1:

\n\n
\nInput: rowSum = [3,8], colSum = [4,7]\nOutput: [[3,0],\n         [1,7]]\nExplanation: \n0th row: 3 + 0 = 3 == rowSum[0]\n1st row: 1 + 7 = 8 == rowSum[1]\n0th column: 3 + 1 = 4 == colSum[0]\n1st column: 0 + 7 = 7 == colSum[1]\nThe row and column sums match, and all matrix elements are non-negative.\nAnother possible matrix is: [[1,2],\n                             [3,5]]\n
\n\n

Example 2:

\n\n
\nInput: rowSum = [5,7,10], colSum = [8,6,8]\nOutput: [[0,5,0],\n         [6,1,0],\n         [2,0,8]]\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 1364, "dislikes": 38, "isLiked": null, "similarQuestions": "[{\"title\": \"Reconstruct a 2-Row Binary Matrix\", \"titleSlug\": \"reconstruct-a-2-row-binary-matrix\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[3,8]\n[4,7]\n[5,7,10]\n[8,6,8]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Greedy", "slug": "greedy", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Matrix", "slug": "matrix", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector> restoreMatrix(vector& rowSum, vector& colSum) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int[][] restoreMatrix(int[] rowSum, int[] colSum) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def restoreMatrix(self, rowSum, colSum):\n \"\"\"\n :type rowSum: List[int]\n :type colSum: List[int]\n :rtype: List[List[int]]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "/**\n * Return an array of arrays of size *returnSize.\n * The sizes of the arrays are returned as *returnColumnSizes array.\n * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().\n */\nint** restoreMatrix(int* rowSum, int rowSumSize, int* colSum, int colSumSize, int* returnSize, int** returnColumnSizes) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int[][] RestoreMatrix(int[] rowSum, int[] colSum) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} rowSum\n * @param {number[]} colSum\n * @return {number[][]}\n */\nvar restoreMatrix = function(rowSum, colSum) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function restoreMatrix(rowSum: number[], colSum: number[]): number[][] {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $rowSum\n * @param Integer[] $colSum\n * @return Integer[][]\n */\n function restoreMatrix($rowSum, $colSum) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func restoreMatrix(_ rowSum: [Int], _ colSum: [Int]) -> [[Int]] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun restoreMatrix(rowSum: IntArray, colSum: IntArray): Array {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n List> restoreMatrix(List rowSum, List colSum) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func restoreMatrix(rowSum []int, colSum []int) [][]int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} row_sum\n# @param {Integer[]} col_sum\n# @return {Integer[][]}\ndef restore_matrix(row_sum, col_sum)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def restoreMatrix(rowSum: Array[Int], colSum: Array[Int]): Array[Array[Int]] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn restore_matrix(row_sum: Vec, col_sum: Vec) -> Vec> {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (restore-matrix rowSum colSum)\n (-> (listof exact-integer?) (listof exact-integer?) (listof (listof exact-integer?)))\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec restore_matrix(RowSum :: [integer()], ColSum :: [integer()]) -> [[integer()]].\nrestore_matrix(RowSum, ColSum) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec restore_matrix(row_sum :: [integer], col_sum :: [integer]) :: [[integer]]\n def restore_matrix(row_sum, col_sum) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"37.9K\", \"totalSubmission\": \"49K\", \"totalAcceptedRaw\": 37942, \"totalSubmissionRaw\": 48990, \"acRate\": \"77.4%\"}", "hints": [ "Find the smallest rowSum or colSum, and let it be x. Place that number in the grid, and subtract x from rowSum and colSum. Continue until all the sums are satisfied." ], "solution": null, "status": null, "sampleTestCase": "[3,8]\n[4,7]", "metaData": "{\n \"name\": \"restoreMatrix\",\n \"params\": [\n {\n \"name\": \"rowSum\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"colSum\"\n }\n ],\n \"return\": {\n \"type\": \"integer[][]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }