{ "data": { "question": { "questionId": "609", "questionFrontendId": "609", "boundTopicId": null, "title": "Find Duplicate File in System", "titleSlug": "find-duplicate-file-in-system", "content": "
Given a list paths
of directory info, including the directory path, and all the files with contents in this directory, return all the duplicate files in the file system in terms of their paths. You may return the answer in any order.
A group of duplicate files consists of at least two files that have the same content.
\n\nA single directory info string in the input list has the following format:
\n\n"root/d1/d2/.../dm f1.txt(f1_content) f2.txt(f2_content) ... fn.txt(fn_content)"
It means there are n
files (f1.txt, f2.txt ... fn.txt)
with content (f1_content, f2_content ... fn_content)
respectively in the directory "root/d1/d2/.../dm"
. Note that n >= 1
and m >= 0
. If m = 0
, it means the directory is just the root directory.
The output is a list of groups of duplicate file paths. For each group, it contains all the file paths of the files that have the same content. A file path is a string that has the following format:
\n\n"directory_path/file_name.txt"
\n
Example 1:
\nInput: paths = [\"root/a 1.txt(abcd) 2.txt(efgh)\",\"root/c 3.txt(abcd)\",\"root/c/d 4.txt(efgh)\",\"root 4.txt(efgh)\"]\nOutput: [[\"root/a/2.txt\",\"root/c/d/4.txt\",\"root/4.txt\"],[\"root/a/1.txt\",\"root/c/3.txt\"]]\n
Example 2:
\nInput: paths = [\"root/a 1.txt(abcd) 2.txt(efgh)\",\"root/c 3.txt(abcd)\",\"root/c/d 4.txt(efgh)\"]\nOutput: [[\"root/a/2.txt\",\"root/c/d/4.txt\"],[\"root/a/1.txt\",\"root/c/3.txt\"]]\n\n
\n
Constraints:
\n\n1 <= paths.length <= 2 * 104
1 <= paths[i].length <= 3000
1 <= sum(paths[i].length) <= 5 * 105
paths[i]
consist of English letters, digits, '/'
, '.'
, '('
, ')'
, and ' '
.\n
Follow up:
\n\nCompiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }