{ "data": { "question": { "questionId": "2826", "questionFrontendId": "2732", "boundTopicId": null, "title": "Find a Good Subset of the Matrix", "titleSlug": "find-a-good-subset-of-the-matrix", "content": "
You are given a 0-indexed m x n
binary matrix grid
.
Let us call a non-empty subset of rows good if the sum of each column of the subset is at most half of the length of the subset.
\n\nMore formally, if the length of the chosen subset of rows is k
, then the sum of each column should be at most floor(k / 2)
.
Return an integer array that contains row indices of a good subset sorted in ascending order.
\n\nIf there are multiple good subsets, you can return any of them. If there are no good subsets, return an empty array.
\n\nA subset of rows of the matrix grid
is any matrix that can be obtained by deleting some (possibly none or all) rows from grid
.
\n
Example 1:
\n\n\nInput: grid = [[0,1,1,0],[0,0,0,1],[1,1,1,1]]\nOutput: [0,1]\nExplanation: We can choose the 0th and 1st rows to create a good subset of rows.\nThe length of the chosen subset is 2.\n- The sum of the 0th column is 0 + 0 = 0, which is at most half of the length of the subset.\n- The sum of the 1st column is 1 + 0 = 1, which is at most half of the length of the subset.\n- The sum of the 2nd column is 1 + 0 = 1, which is at most half of the length of the subset.\n- The sum of the 3rd column is 0 + 1 = 1, which is at most half of the length of the subset.\n\n\n
Example 2:
\n\n\nInput: grid = [[0]]\nOutput: [0]\nExplanation: We can choose the 0th row to create a good subset of rows.\nThe length of the chosen subset is 1.\n- The sum of the 0th column is 0, which is at most half of the length of the subset.\n\n\n
Example 3:
\n\n\nInput: grid = [[1,1,1],[1,1,1]]\nOutput: []\nExplanation: It is impossible to choose any subset of rows to create a good subset.\n\n\n
\n
Constraints:
\n\nm == grid.length
n == grid[i].length
1 <= m <= 104
1 <= n <= 5
grid[i][j]
is either 0
or 1
.Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }