{ "data": { "question": { "questionId": "805", "questionFrontendId": "789", "boundTopicId": null, "title": "Escape The Ghosts", "titleSlug": "escape-the-ghosts", "content": "
You are playing a simplified PAC-MAN game on an infinite 2-D grid. You start at the point [0, 0]
, and you are given a destination point target = [xtarget, ytarget]
that you are trying to get to. There are several ghosts on the map with their starting positions given as a 2D array ghosts
, where ghosts[i] = [xi, yi]
represents the starting position of the ith
ghost. All inputs are integral coordinates.
Each turn, you and all the ghosts may independently choose to either move 1 unit in any of the four cardinal directions: north, east, south, or west, or stay still. All actions happen simultaneously.
\n\nYou escape if and only if you can reach the target before any ghost reaches you. If you reach any square (including the target) at the same time as a ghost, it does not count as an escape.
\n\nReturn true
if it is possible to escape regardless of how the ghosts move, otherwise return false
.
\n
Example 1:
\n\n\nInput: ghosts = [[1,0],[0,3]], target = [0,1]\nOutput: true\nExplanation: You can reach the destination (0, 1) after 1 turn, while the ghosts located at (1, 0) and (0, 3) cannot catch up with you.\n\n\n
Example 2:
\n\n\nInput: ghosts = [[1,0]], target = [2,0]\nOutput: false\nExplanation: You need to reach the destination (2, 0), but the ghost at (1, 0) lies between you and the destination.\n\n\n
Example 3:
\n\n\nInput: ghosts = [[2,0]], target = [1,0]\nOutput: false\nExplanation: The ghost can reach the target at the same time as you.\n\n\n
\n
Constraints:
\n\n1 <= ghosts.length <= 100
ghosts[i].length == 2
-104 <= xi, yi <= 104
target.length == 2
-104 <= xtarget, ytarget <= 104
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }