{ "data": { "question": { "questionId": "595", "questionFrontendId": "595", "boundTopicId": null, "title": "Big Countries", "titleSlug": "big-countries", "content": "

Table: World

\n\n
\n+-------------+---------+\n| Column Name | Type    |\n+-------------+---------+\n| name        | varchar |\n| continent   | varchar |\n| area        | int     |\n| population  | int     |\n| gdp         | bigint  |\n+-------------+---------+\nname is the primary key (column with unique values) for this table.\nEach row of this table gives information about the name of a country, the continent to which it belongs, its area, the population, and its GDP value.\n
\n\n

 

\n\n

A country is big if:

\n\n\n\n

Write a solution to find the name, population, and area of the big countries.

\n\n

Return the result table in any order.

\n\n

The result format is in the following example.

\n\n

 

\n

Example 1:

\n\n
\nInput: \nWorld table:\n+-------------+-----------+---------+------------+--------------+\n| name        | continent | area    | population | gdp          |\n+-------------+-----------+---------+------------+--------------+\n| Afghanistan | Asia      | 652230  | 25500100   | 20343000000  |\n| Albania     | Europe    | 28748   | 2831741    | 12960000000  |\n| Algeria     | Africa    | 2381741 | 37100000   | 188681000000 |\n| Andorra     | Europe    | 468     | 78115      | 3712000000   |\n| Angola      | Africa    | 1246700 | 20609294   | 100990000000 |\n+-------------+-----------+---------+------------+--------------+\nOutput: \n+-------------+------------+---------+\n| name        | population | area    |\n+-------------+------------+---------+\n| Afghanistan | 25500100   | 652230  |\n| Algeria     | 37100000   | 2381741 |\n+-------------+------------+---------+\n
\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 2403, "dislikes": 1266, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "{\"headers\": {\"World\": [\"name\", \"continent\",\t\"area\",\t\"population\", \"gdp\"]}, \"rows\": {\"World\": [[\"Afghanistan\", \"Asia\", 652230, 25500100, 20343000000], [\"Albania\", \"Europe\", 28748, 2831741, 12960000000], [\"Algeria\", \"Africa\", 2381741, 37100000, 188681000000], [\"Andorra\", \"Europe\", 468, 78115,\t3712000000], [\"Angola\", \"Africa\", 1246700, 20609294, 100990000000]]}}", "categoryTitle": "Database", "contributors": [], "topicTags": [ { "name": "Database", "slug": "database", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "MySQL", "langSlug": "mysql", "code": "# Write your MySQL query statement below\n", "__typename": "CodeSnippetNode" }, { "lang": "MS SQL Server", "langSlug": "mssql", "code": "/* Write your T-SQL query statement below */\n", "__typename": "CodeSnippetNode" }, { "lang": "Oracle", "langSlug": "oraclesql", "code": "/* Write your PL/SQL query statement below */\n", "__typename": "CodeSnippetNode" }, { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" }, { "lang": "PostgreSQL", "langSlug": "postgresql", "code": "-- Write your PostgreSQL query statement below\n", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"901.1K\", \"totalSubmission\": \"1.3M\", \"totalAcceptedRaw\": 901066, \"totalSubmissionRaw\": 1317013, \"acRate\": \"68.4%\"}", "hints": [], "solution": { "id": "200", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "{\"headers\": {\"World\": [\"name\", \"continent\",\t\"area\",\t\"population\", \"gdp\"]}, \"rows\": {\"World\": [[\"Afghanistan\", \"Asia\", 652230, 25500100, 20343000000], [\"Albania\", \"Europe\", 28748, 2831741, 12960000000], [\"Algeria\", \"Africa\", 2381741, 37100000, 188681000000], [\"Andorra\", \"Europe\", 468, 78115,\t3712000000], [\"Angola\", \"Africa\", 1246700, 20609294, 100990000000]]}}", "metaData": "{\"mysql\": [\"Create table If Not Exists World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)\"], \"mssql\": [\"Create table World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)\"], \"oraclesql\": [\"Create table World (name varchar(255), continent varchar(255), area int, population int, gdp int)\"], \"database\": true, \"name\": \"big_countries\", \"pythondata\": [\"World = pd.DataFrame([], columns=['name', 'continent', 'area', 'population', 'gdp']).astype({'name':'object', 'continent':'object', 'area':'Int64', 'population':'Int64', 'gdp':'Int64'})\"], \"manual\": false, \"postgresql\": [\"Create table If Not Exists World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)\"], \"database_schema\": {\"World\": {\"name\": \"VARCHAR(255)\", \"continent\": \"VARCHAR(255)\", \"area\": \"INT\", \"population\": \"INT\", \"gdp\": \"BIGINT\"}}}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [ "Create table If Not Exists World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)", "Truncate table World", "insert into World (name, continent, area, population, gdp) values ('Afghanistan', 'Asia', '652230', '25500100', '20343000000')", "insert into World (name, continent, area, population, gdp) values ('Albania', 'Europe', '28748', '2831741', '12960000000')", "insert into World (name, continent, area, population, gdp) values ('Algeria', 'Africa', '2381741', '37100000', '188681000000')", "insert into World (name, continent, area, population, gdp) values ('Andorra', 'Europe', '468', '78115', '3712000000')", "insert into World (name, continent, area, population, gdp) values ('Angola', 'Africa', '1246700', '20609294', '100990000000')" ], "enableRunCode": true, "enableTestMode": false, "enableDebugger": false, "envInfo": "{\"mysql\": [\"MySQL\", \"

MySQL 8.0.

\"], \"mssql\": [\"MS SQL Server\", \"

mssql server 2019.

\"], \"oraclesql\": [\"Oracle\", \"

Oracle Sql 11.2.

\"], \"pythondata\": [\"Pandas\", \"

Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0

\"], \"postgresql\": [\"PostgreSQL\", \"

PostgreSQL 16

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }