You are given two 0-indexed integer arrays nums
and multipliers
of size n
and m
respectively, where n >= m
.
You begin with a score of 0
. You want to perform exactly m
operations. On the ith
operation (0-indexed) you will:
x
from either the start or the end of the array nums
.multipliers[i] * x
to your score.
multipliers[0]
corresponds to the first operation, multipliers[1]
to the second operation, and so on.x
from nums
.Return the maximum score after performing m
operations.
Example 1:
Input: nums = [1,2,3], multipliers = [3,2,1] Output: 14 Explanation: An optimal solution is as follows: - Choose from the end, [1,2,3], adding 3 * 3 = 9 to the score. - Choose from the end, [1,2], adding 2 * 2 = 4 to the score. - Choose from the end, [1], adding 1 * 1 = 1 to the score. The total score is 9 + 4 + 1 = 14.
Example 2:
Input: nums = [-5,-3,-3,-2,7,1], multipliers = [-10,-5,3,4,6] Output: 102 Explanation: An optimal solution is as follows: - Choose from the start, [-5,-3,-3,-2,7,1], adding -5 * -10 = 50 to the score. - Choose from the start, [-3,-3,-2,7,1], adding -3 * -5 = 15 to the score. - Choose from the start, [-3,-2,7,1], adding -3 * 3 = -9 to the score. - Choose from the end, [-2,7,1], adding 1 * 4 = 4 to the score. - Choose from the end, [-2,7], adding 7 * 6 = 42 to the score. The total score is 50 + 15 - 9 + 4 + 42 = 102.
Constraints:
n == nums.length
m == multipliers.length
1 <= m <= 300
m <= n <= 105
-1000 <= nums[i], multipliers[i] <= 1000