You are given an integer n and an undirected tree rooted at node 0 with n nodes numbered from 0 to n - 1. This is represented by a 2D array edges of length n - 1, where edges[i] = [ui, vi] indicates an edge from node ui to vi .

Each node i has an associated cost given by cost[i], representing the cost to traverse that node.

The score of a path is defined as the sum of the costs of all nodes along the path.

Your goal is to make the scores of all root-to-leaf paths equal by increasing the cost of any number of nodes by any non-negative amount.

Return the minimum number of nodes whose cost must be increased to make all root-to-leaf path scores equal.

 

Example 1:

Input: n = 3, edges = [[0,1],[0,2]], cost = [2,1,3]

Output: 1

Explanation:

There are two root-to-leaf paths:

To make all root-to-leaf path scores equal to 5, increase the cost of node 1 by 2.
Only one node is increased, so the output is 1.

Example 2:

Input: n = 3, edges = [[0,1],[1,2]], cost = [5,1,4]

Output: 0

Explanation:

There is only one root-to-leaf path:

Since only one root-to-leaf path exists, all path costs are trivially equal, and the output is 0.

Example 3:

Input: n = 5, edges = [[0,4],[0,1],[1,2],[1,3]], cost = [3,4,1,1,7]

Output: 1

Explanation:

There are three root-to-leaf paths:

To make all root-to-leaf path scores equal to 10, increase the cost of node 1 by 2. Thus, the output is 1.

 

Constraints: