mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-09-05 23:41:41 +08:00
update
This commit is contained in:
@@ -0,0 +1,64 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3609",
|
||||
"questionFrontendId": "3293",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2920566,
|
||||
"title": "Calculate Product Final Price",
|
||||
"titleSlug": "calculate-product-final-price",
|
||||
"content": null,
|
||||
"translatedTitle": "计算产品最终价格",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"21\", \"totalSubmission\": \"24\", \"totalAcceptedRaw\": 21, \"totalSubmissionRaw\": 24, \"acRate\": \"87.5%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Products\":[\"product_id\",\"category\",\"price\"],\"Discounts\":[\"category\",\"discount\"]},\"rows\":{\"Products\":[[1,\"Electronics\",1000],[2,\"Clothing\",50],[3,\"Electronics\",1200],[4,\"Home\",500]],\"Discounts\":[[\"Electronics\",10],[\"Clothing\",20]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists Products (product_id int, category varchar(50), price int)\",\"Create table if not exists Discounts(category varchar(50), discount int)\"],\"mssql\":[\"Create table Products (product_id int, category varchar(50), price int)\",\"Create table Discounts(category varchar(50), discount int)\"],\"oraclesql\":[\"Create table Products (product_id Number, category varchar2(50), price Number)\",\"Create table Discounts(category varchar2(50), discount Number)\"],\"database\":true,\"name\":\"calculate_final_prices\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Products (\\n product_id INT,\\n category VARCHAR(50),\\n price INT\\n);\\n\",\"CREATE TABLE IF NOT EXISTS Discounts (\\n category VARCHAR(50),\\n discount INT\\n);\\n\"],\"pythondata\":[\"Products = pd.DataFrame(columns=['product_id', 'category', 'price'], dtype=int)\\n\",\"Discounts = pd.DataFrame({'category': pd.Series(dtype='str'), 'discount': pd.Series(dtype='int')})\\n\"],\"database_schema\":{\"Products\":{\"product_id\":\"INT\",\"category\":\"VARCHAR(50)\",\"price\":\"INT\"},\"Discounts\":{\"category\":\"VARCHAR(50)\",\"discount\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists Products (product_id int, category varchar(50), price int)",
|
||||
"Create table if not exists Discounts(category varchar(50), discount int)",
|
||||
"Truncate table Products",
|
||||
"insert into Products (product_id, category, price) values ('1', 'Electronics', '1000')",
|
||||
"insert into Products (product_id, category, price) values ('2', 'Clothing', '50')",
|
||||
"insert into Products (product_id, category, price) values ('3', 'Electronics', '1200')",
|
||||
"insert into Products (product_id, category, price) values ('4', 'Home', '500')",
|
||||
"Truncate table Discounts",
|
||||
"insert into Discounts (category, discount) values ('Electronics', '10')",
|
||||
"insert into Discounts (category, discount) values ('Clothing', '20')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Products\":[\"product_id\",\"category\",\"price\"],\"Discounts\":[\"category\",\"discount\"]},\"rows\":{\"Products\":[[1,\"Electronics\",1000],[2,\"Clothing\",50],[3,\"Electronics\",1200],[4,\"Home\",500]],\"Discounts\":[[\"Electronics\",10],[\"Clothing\",20]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -0,0 +1,76 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3589",
|
||||
"questionFrontendId": "3278",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2900887,
|
||||
"title": "Find Candidates for Data Scientist Position II",
|
||||
"titleSlug": "find-candidates-for-data-scientist-position-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "寻找数据科学家职位的候选人 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"70\", \"totalSubmission\": \"132\", \"totalAcceptedRaw\": 70, \"totalSubmissionRaw\": 132, \"acRate\": \"53.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\",\"proficiency\"],\"Projects\":[\"project_id\",\"skill\",\"importance\"]},\"rows\":{\"Candidates\":[[101,\"Python\",5],[101,\"Tableau\",3],[101,\"PostgreSQL\",4],[101,\"TensorFlow\",2],[102,\"Python\",4],[102,\"Tableau\",5],[102,\"PostgreSQL\",4],[102,\"R\",4],[103,\"Python\",3],[103,\"Tableau\",5],[103,\"PostgreSQL\",5],[103,\"Spark\",4]],\"Projects\":[[501,\"Python\",4],[501,\"Tableau\",3],[501,\"PostgreSQL\",5],[502,\"Python\",3],[502,\"Tableau\",4],[502,\"R\",2]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists Candidates(candidate_id int, skill varchar(50), proficiency int)\",\"Create table if not exists Projects( project_id int, skill varchar(50), importance int)\"],\"mssql\":[\"Create table Candidates(candidate_id int, skill varchar(50), proficiency int)\",\"Create table Projects( project_id int, skill varchar(50), importance int)\"],\"oraclesql\":[\"Create table Candidates(candidate_id number, skill varchar2(50), proficiency number)\",\"Create table Projects(project_id number, skill varchar2(50), importance number)\"],\"database\":true,\"name\":\"find_best_candidates\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Candidates (\\n candidate_id INT,\\n skill VARCHAR(50),\\n proficiency INT\\n);\\n\",\"CREATE TABLE IF NOT EXISTS Projects (\\n project_id INT,\\n skill VARCHAR(50),\\n importance INT\\n);\\n\"],\"pythondata\":[\"Candidates = pd.DataFrame({\\n 'candidate_id': pd.Series(dtype='int'),\\n 'skill': pd.Series(dtype='str'),\\n 'proficiency': pd.Series(dtype='int')\\n})\",\"Projects = pd.DataFrame({\\n 'project_id': pd.Series(dtype='int'),\\n 'skill': pd.Series(dtype='str'),\\n 'importance': pd.Series(dtype='int')\\n})\"],\"database_schema\":{\"Candidates\":{\"candidate_id\":\"INT\",\"skill\":\"VARCHAR(50)\",\"proficiency\":\"INT\"},\"Projects\":{\"project_id\":\"INT\",\"skill\":\"VARCHAR(50)\",\"importance\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists Candidates(candidate_id int, skill varchar(50), proficiency int)",
|
||||
"Create table if not exists Projects( project_id int, skill varchar(50), importance int)",
|
||||
"Truncate table Candidates",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('101', 'Python', '5')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('101', 'Tableau', '3')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('101', 'PostgreSQL', '4')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('101', 'TensorFlow', '2')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('102', 'Python', '4')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('102', 'Tableau', '5')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('102', 'PostgreSQL', '4')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('102', 'R', '4')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Python', '3')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Tableau', '5')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('103', 'PostgreSQL', '5')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Spark', '4')",
|
||||
"Truncate table Projects",
|
||||
"insert into Projects (project_id, skill, importance) values ('501', 'Python', '4')",
|
||||
"insert into Projects (project_id, skill, importance) values ('501', 'Tableau', '3')",
|
||||
"insert into Projects (project_id, skill, importance) values ('501', 'PostgreSQL', '5')",
|
||||
"insert into Projects (project_id, skill, importance) values ('502', 'Python', '3')",
|
||||
"insert into Projects (project_id, skill, importance) values ('502', 'Tableau', '4')",
|
||||
"insert into Projects (project_id, skill, importance) values ('502', 'R', '2')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\",\"proficiency\"],\"Projects\":[\"project_id\",\"skill\",\"importance\"]},\"rows\":{\"Candidates\":[[101,\"Python\",5],[101,\"Tableau\",3],[101,\"PostgreSQL\",4],[101,\"TensorFlow\",2],[102,\"Python\",4],[102,\"Tableau\",5],[102,\"PostgreSQL\",4],[102,\"R\",4],[103,\"Python\",3],[103,\"Tableau\",5],[103,\"PostgreSQL\",5],[103,\"Spark\",4]],\"Projects\":[[501,\"Python\",4],[501,\"Tableau\",3],[501,\"PostgreSQL\",5],[502,\"Python\",3],[502,\"Tableau\",4],[502,\"R\",2]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3585",
|
||||
"questionFrontendId": "3268",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2895162,
|
||||
"title": "Find Overlapping Shifts II",
|
||||
"titleSlug": "find-overlapping-shifts-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "查找重叠的班次 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"90\", \"totalSubmission\": \"127\", \"totalAcceptedRaw\": 90, \"totalSubmissionRaw\": 127, \"acRate\": \"70.9%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\": {\"EmployeeShifts\":[\"employee_id\",\"start_time\",\"end_time\"]},\"rows\":{\"EmployeeShifts\":[[1,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"],[1,\"2023-10-01 15:00:00\",\"2023-10-01 23:00:00\"],[1,\"2023-10-01 16:00:00\",\"2023-10-02 00:00:00\"],[2,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"],[2,\"2023-10-01 11:00:00\",\"2023-10-01 19:00:00\"],[3,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists EmployeeShifts(employee_id int, start_time datetime, end_time datetime)\"],\"mssql\":[\"Create table EmployeeShifts(employee_id int, start_time datetime, end_time datetime)\"],\"oraclesql\":[\"Create table EmployeeShifts(employee_id number, start_time date, end_time date)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD HH24:MI:SS'\"],\"database\":true,\"name\":\"calculate_shift_overlaps\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS EmployeeShifts (\\n employee_id INT,\\n start_time TIMESTAMP,\\n end_time TIMESTAMP\\n);\\n\"],\"pythondata\":[\"EmployeeShifts = pd.DataFrame({\\n 'employee_id': pd.Series(dtype='int'),\\n 'start_time': pd.Series(dtype='datetime64[ns]'),\\n 'end_time': pd.Series(dtype='datetime64[ns]')\\n})\"],\"database_schema\":{\"EmployeeShifts\":{\"employee_id\":\"INT\",\"start_time\":\"DATETIME\",\"end_time\":\"DATETIME\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists EmployeeShifts(employee_id int, start_time datetime, end_time datetime)",
|
||||
"Truncate table EmployeeShifts",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '2023-10-01 09:00:00', '2023-10-01 17:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '2023-10-01 15:00:00', '2023-10-01 23:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '2023-10-01 16:00:00', '2023-10-02 00:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('2', '2023-10-01 09:00:00', '2023-10-01 17:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('2', '2023-10-01 11:00:00', '2023-10-01 19:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('3', '2023-10-01 09:00:00', '2023-10-01 17:00:00')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\": {\"EmployeeShifts\":[\"employee_id\",\"start_time\",\"end_time\"]},\"rows\":{\"EmployeeShifts\":[[1,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"],[1,\"2023-10-01 15:00:00\",\"2023-10-01 23:00:00\"],[1,\"2023-10-01 16:00:00\",\"2023-10-02 00:00:00\"],[2,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"],[2,\"2023-10-01 11:00:00\",\"2023-10-01 19:00:00\"],[3,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
180
leetcode-cn/originData/convert-date-to-binary.json
Normal file
180
leetcode-cn/originData/convert-date-to-binary.json
Normal file
File diff suppressed because one or more lines are too long
200
leetcode-cn/originData/find-a-safe-walk-through-a-grid.json
Normal file
200
leetcode-cn/originData/find-a-safe-walk-through-a-grid.json
Normal file
File diff suppressed because one or more lines are too long
168
leetcode-cn/originData/find-indices-of-stable-mountains.json
Normal file
168
leetcode-cn/originData/find-indices-of-stable-mountains.json
Normal file
File diff suppressed because one or more lines are too long
195
leetcode-cn/originData/find-the-count-of-good-integers.json
Normal file
195
leetcode-cn/originData/find-the-count-of-good-integers.json
Normal file
File diff suppressed because one or more lines are too long
174
leetcode-cn/originData/find-the-key-of-the-numbers.json
Normal file
174
leetcode-cn/originData/find-the-key-of-the-numbers.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
184
leetcode-cn/originData/hash-divided-string.json
Normal file
184
leetcode-cn/originData/hash-divided-string.json
Normal file
File diff suppressed because one or more lines are too long
184
leetcode-cn/originData/k-th-nearest-obstacle-queries.json
Normal file
184
leetcode-cn/originData/k-th-nearest-obstacle-queries.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
196
leetcode-cn/originData/maximize-score-of-numbers-in-ranges.json
Normal file
196
leetcode-cn/originData/maximize-score-of-numbers-in-ranges.json
Normal file
File diff suppressed because one or more lines are too long
177
leetcode-cn/originData/maximum-multiplication-score.json
Normal file
177
leetcode-cn/originData/maximum-multiplication-score.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
184
leetcode-cn/originData/maximum-xor-score-subarray-queries.json
Normal file
184
leetcode-cn/originData/maximum-xor-score-subarray-queries.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
182
leetcode-cn/originData/reach-end-of-array-with-max-score.json
Normal file
182
leetcode-cn/originData/reach-end-of-array-with-max-score.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
182
leetcode-cn/originData/the-two-sneaky-numbers-of-digitville.json
Normal file
182
leetcode-cn/originData/the-two-sneaky-numbers-of-digitville.json
Normal file
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user