mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-09-05 23:41:41 +08:00
update
This commit is contained in:
56
leetcode-cn/originData/[no content]binary-tree-nodes.json
Normal file
56
leetcode-cn/originData/[no content]binary-tree-nodes.json
Normal file
@@ -0,0 +1,56 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3259",
|
||||
"questionFrontendId": "100177",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653971,
|
||||
"title": "Binary Tree Nodes",
|
||||
"titleSlug": "binary-tree-nodes",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"23\", \"totalSubmission\": \"30\", \"totalAcceptedRaw\": 23, \"totalSubmissionRaw\": 30, \"acRate\": \"76.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Tree\":[\"N\",\"P\"]},\"rows\":{\"Tree\":[[1,2],[3,2],[6,8],[9,8],[2,5],[8,5],[5,null]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Tree (N int,P int)\"],\"mssql\":[\"Create table Tree (N int,P int)\"],\"oraclesql\":[\"Create table Tree (N int,P int)\"],\"database\":true,\"name\":\"binary_tree_nodes\",\"pythondata\":[\"Tree = pd.DataFrame([], columns=['N', 'P']).astype({'N':'Int64', 'P':'Int64'})\"],\"postgresql\":[\"Create table If Not Exists Tree (N int,P int)\\n\"],\"database_schema\":{\"Tree\":{\"N\":\"INT\",\"P\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Tree (N int,P int)",
|
||||
"Truncate table Tree",
|
||||
"insert into Tree (N, P) values ('1', '2')",
|
||||
"insert into Tree (N, P) values ('3', '2')",
|
||||
"insert into Tree (N, P) values ('6', '8')",
|
||||
"insert into Tree (N, P) values ('9', '8')",
|
||||
"insert into Tree (N, P) values ('2', '5')",
|
||||
"insert into Tree (N, P) values ('8', '5')",
|
||||
"insert into Tree (N, P) values ('5', 'None')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Tree\":[\"N\",\"P\"]},\"rows\":{\"Tree\":[[1,2],[3,2],[6,8],[9,8],[2,5],[8,5],[5,null]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,61 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3369",
|
||||
"questionFrontendId": "3061",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2658813,
|
||||
"title": "Calculate Trapping Rain Water",
|
||||
"titleSlug": "calculate-trapping-rain-water",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"8\", \"totalSubmission\": \"8\", \"totalAcceptedRaw\": 8, \"totalSubmissionRaw\": 8, \"acRate\": \"100.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Heights\":[\"id\",\"height\"]},\"rows\":{\"Heights\":[[1,0],[2,1],[3,0],[4,2],[5,1],[6,0],[7,1],[8,3],[9,2],[10,1],[11,2],[12,1]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if not Exists Heights(id int, height int)\"],\"mssql\":[\"Create Table Heights(id int,height int)\"],\"oraclesql\":[\"Create Table Heights(id int,height int)\"],\"database\":true,\"name\":\"calculate_trapped_rain_water\",\"postgresql\":[\"CREATE TABLE Heights(\\n id int,\\n height int\\n);\\n\"],\"pythondata\":[\"Heights = pd.DataFrame([], columns=['id', 'height']).astype({'id':'Int64', 'height':'Int64'})\\n\"],\"database_schema\":{\"Heights\":{\"id\":\"INT\",\"height\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if not Exists Heights(id int, height int)",
|
||||
"Truncate table Heights",
|
||||
"insert into Heights (id, height) values ('1', '0')",
|
||||
"insert into Heights (id, height) values ('2', '1')",
|
||||
"insert into Heights (id, height) values ('3', '0')",
|
||||
"insert into Heights (id, height) values ('4', '2')",
|
||||
"insert into Heights (id, height) values ('5', '1')",
|
||||
"insert into Heights (id, height) values ('6', '0')",
|
||||
"insert into Heights (id, height) values ('7', '1')",
|
||||
"insert into Heights (id, height) values ('8', '3')",
|
||||
"insert into Heights (id, height) values ('9', '2')",
|
||||
"insert into Heights (id, height) values ('10', '1')",
|
||||
"insert into Heights (id, height) values ('11', '2')",
|
||||
"insert into Heights (id, height) values ('12', '1')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Heights\":[\"id\",\"height\"]},\"rows\":{\"Heights\":[[1,0],[2,1],[3,0],[4,2],[5,1],[6,0],[7,1],[8,3],[9,2],[10,1],[11,2],[12,1]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,53 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3258",
|
||||
"questionFrontendId": "100176",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2644304,
|
||||
"title": "Classifying Triangles by Lengths",
|
||||
"titleSlug": "classifying-triangles-by-lengths",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 1,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"37\", \"totalSubmission\": \"48\", \"totalAcceptedRaw\": 37, \"totalSubmissionRaw\": 48, \"acRate\": \"77.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Triangles\":[\"A\",\"B\",\"C\"]},\"rows\":{\"Triangles\":[[20,20,23],[20,20,20],[20,21,22],[13,14,30]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Triangles (A int, B int, C int)\"],\"mssql\":[\"Create table Triangles (A int, B int, C int)\"],\"oraclesql\":[\"Create table Triangles (A int, B int, C int)\"],\"database\":true,\"name\":\"type_of_triangle\",\"pythondata\":[\"Triangles = pd.DataFrame([], columns=['A', 'B', 'C']).astype({'A':'Int64', 'B':'Int64', 'C':'Int64'})\\n\"],\"postgresql\":[\"Create table If Not Exists Triangles (A int, B int, C int)\\n\"],\"database_schema\":{\"Triangles\":{\"A\":\"INT\",\"B\":\"INT\",\"C\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Triangles (A int, B int, C int)",
|
||||
"Truncate table Triangles",
|
||||
"insert into Triangles (A, B, C) values ('20', '20', '23')",
|
||||
"insert into Triangles (A, B, C) values ('20', '20', '20')",
|
||||
"insert into Triangles (A, B, C) values ('20', '21', '22')",
|
||||
"insert into Triangles (A, B, C) values ('13', '14', '30')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Triangles\":[\"A\",\"B\",\"C\"]},\"rows\":{\"Triangles\":[[20,20,23],[20,20,20],[20,21,22],[13,14,30]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,59 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3357",
|
||||
"questionFrontendId": "100252",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653974,
|
||||
"title": "Employees Project Allocation",
|
||||
"titleSlug": "employees-project-allocation",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"8\", \"totalSubmission\": \"14\", \"totalAcceptedRaw\": 8, \"totalSubmissionRaw\": 14, \"acRate\": \"57.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Project\":[\"project_id\",\"employee_id\",\"workload\"],\"Employees\":[\"employee_id\",\"name\",\"team\"]},\"rows\":{\"Project\":[[1,1,45],[1,2,90],[2,3,12],[2,4,68]],\"Employees\":[[1,\"Khaled\",\"A\"],[2,\"Ali\",\"B\"],[3,\"John\",\"B\"],[4,\"Doe\",\"A\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Project (project_id int, employee_id int, workload int)\",\"Create table If Not Exists Employees (employee_id int, name varchar(20), team varchar(20))\"],\"mssql\":[\"Create table Project (project_id int, employee_id int, workload int)\",\"Create table Employees (employee_id int, name varchar(20), team varchar(20))\"],\"oraclesql\":[\"Create table Project (project_id int, employee_id int, workload int)\",\"Create table Employees (employee_id int, name varchar(20), team varchar(20))\"],\"database\":true,\"name\":\"employees_with_above_avg_workload\",\"pythondata\":[\"Project = pd.DataFrame([], columns=['project_id', 'employee_id', 'workload']).astype({'project_id':'Int64', 'employee_id':'Int64', 'workload':'Int64'})\\n\",\"Employees = pd.DataFrame([], columns=['employee_id', 'name', 'team']).astype({'employee_id':'Int64', 'name':'object', 'team':'object'})\"],\"postgresql\":[\"CREATE TABLE Project (\\n project_id int,\\n employee_id int,\\n workload int\\n);\",\"CREATE TABLE Employees (\\n employee_id int,\\n name varchar(20),\\n team varchar(20)\\n);\"],\"database_schema\":{\"Project\":{\"project_id\":\"INT\",\"employee_id\":\"INT\",\"workload\":\"INT\"},\"Employees\":{\"employee_id\":\"INT\",\"name\":\"VARCHAR(20)\",\"team\":\"VARCHAR(20)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Project (project_id int, employee_id int, workload int)",
|
||||
"Create table If Not Exists Employees (employee_id int, name varchar(20), team varchar(20))",
|
||||
"Truncate table Project",
|
||||
"insert into Project (project_id, employee_id, workload) values ('1', '1', '45')",
|
||||
"insert into Project (project_id, employee_id, workload) values ('1', '2', '90')",
|
||||
"insert into Project (project_id, employee_id, workload) values ('2', '3', '12')",
|
||||
"insert into Project (project_id, employee_id, workload) values ('2', '4', '68')",
|
||||
"Truncate table Employees",
|
||||
"insert into Employees (employee_id, name, team) values ('1', 'Khaled', 'A')",
|
||||
"insert into Employees (employee_id, name, team) values ('2', 'Ali', 'B')",
|
||||
"insert into Employees (employee_id, name, team) values ('3', 'John', 'B')",
|
||||
"insert into Employees (employee_id, name, team) values ('4', 'Doe', 'A')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Project\":[\"project_id\",\"employee_id\",\"workload\"],\"Employees\":[\"employee_id\",\"name\",\"team\"]},\"rows\":{\"Project\":[[1,1,45],[1,2,90],[2,3,12],[2,4,68]],\"Employees\":[[1,\"Khaled\",\"A\"],[2,\"Ali\",\"B\"],[3,\"John\",\"B\"],[4,\"Doe\",\"A\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3365",
|
||||
"questionFrontendId": "100260",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653967,
|
||||
"title": "Find All Unique Email Domains",
|
||||
"titleSlug": "find-all-unique-email-domains",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 1,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"40\", \"totalSubmission\": \"60\", \"totalAcceptedRaw\": 40, \"totalSubmissionRaw\": 60, \"acRate\": \"66.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Emails\":[\"id\",\"email\"]},\"rows\":{\"Emails\":[[336,\"hwkiy@test.edu\"],[489,\"adcmaf@outlook.com\"],[449,\"vrzmwyum@yahoo.com\"],[95,\"tof@test.edu\"],[320,\"jxhbagkpm@example.org\"],[411,\"zxcf@outlook.com\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Emails (id int, email varchar(255))\"],\"mssql\":[\"Create table Emails (id int, email varchar(255))\"],\"oraclesql\":[\"Create table Emails (id int, email varchar(255))\"],\"database\":true,\"name\":\"find_unique_email_domains\",\"postgresql\":[\"CREATE TABLE Emails (\\n id INT,\\n email VARCHAR(255)\\n);\"],\"pythondata\":[\"Emails = pd.DataFrame([], columns=['id', 'email']).astype({'id':'Int64', 'email':'object'})\\n\"],\"database_schema\":{\"Emails\":{\"id\":\"INT\",\"email\":\"VARCHAR(255)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Emails (id int, email varchar(255))",
|
||||
"Truncate table Emails",
|
||||
"insert into Emails (id, email) values ('336', 'hwkiy@test.edu')",
|
||||
"insert into Emails (id, email) values ('489', 'adcmaf@outlook.com')",
|
||||
"insert into Emails (id, email) values ('449', 'vrzmwyum@yahoo.com')",
|
||||
"insert into Emails (id, email) values ('95', 'tof@test.edu')",
|
||||
"insert into Emails (id, email) values ('320', 'jxhbagkpm@example.org')",
|
||||
"insert into Emails (id, email) values ('411', 'zxcf@outlook.com')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Emails\":[\"id\",\"email\"]},\"rows\":{\"Emails\":[[336,\"hwkiy@test.edu\"],[489,\"adcmaf@outlook.com\"],[449,\"vrzmwyum@yahoo.com\"],[95,\"tof@test.edu\"],[320,\"jxhbagkpm@example.org\"],[411,\"zxcf@outlook.com\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,61 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3256",
|
||||
"questionFrontendId": "100174",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653973,
|
||||
"title": "Find Candidates for Data Scientist Position",
|
||||
"titleSlug": "find-candidates-for-data-scientist-position",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 1,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"54\", \"totalSubmission\": \"70\", \"totalAcceptedRaw\": 54, \"totalSubmissionRaw\": 70, \"acRate\": \"77.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\"]},\"rows\":{\"Candidates\":[[123,\"Python\"],[234,\"R\"],[123,\"Tableau\"],[123,\"PostgreSQL\"],[234,\"PowerBI\"],[234,\"SQL Server\"],[147,\"Python\"],[147,\"Tableau\"],[147,\"Java\"],[147,\"PostgreSQL\"],[256,\"Tableau\"],[102,\"DataAnalysis\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Candidates (candidate_id int, skill varchar(30))\"],\"mssql\":[\"Create table Candidates (candidate_id int, skill varchar(30))\"],\"oraclesql\":[\"Create table Candidates (candidate_id int, skill varchar(30))\"],\"database\":true,\"name\":\"find_candidates\",\"pythondata\":[\"Candidates = pd.DataFrame([], columns=['candidate_id', 'skill']).astype({'candidate_id':'Int64', 'skill':'object'})\\n\"],\"postgresql\":[\"Create table If Not Exists Candidates (candidate_id int, skill varchar(30))\\n\"],\"database_schema\":{\"Candidates\":{\"candidate_id\":\"INT\",\"skill\":\"VARCHAR(30)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Candidates (candidate_id int, skill varchar(30))",
|
||||
"Truncate table Candidates",
|
||||
"insert into Candidates (candidate_id, skill) values ('123', 'Python')",
|
||||
"insert into Candidates (candidate_id, skill) values ('234', 'R')",
|
||||
"insert into Candidates (candidate_id, skill) values ('123', 'Tableau')",
|
||||
"insert into Candidates (candidate_id, skill) values ('123', 'PostgreSQL')",
|
||||
"insert into Candidates (candidate_id, skill) values ('234', 'PowerBI')",
|
||||
"insert into Candidates (candidate_id, skill) values ('234', 'SQL Server')",
|
||||
"insert into Candidates (candidate_id, skill) values ('147', 'Python')",
|
||||
"insert into Candidates (candidate_id, skill) values ('147', 'Tableau')",
|
||||
"insert into Candidates (candidate_id, skill) values ('147', 'Java')",
|
||||
"insert into Candidates (candidate_id, skill) values ('147', 'PostgreSQL')",
|
||||
"insert into Candidates (candidate_id, skill) values ('256', 'Tableau')",
|
||||
"insert into Candidates (candidate_id, skill) values ('102', 'DataAnalysis')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\"]},\"rows\":{\"Candidates\":[[123,\"Python\"],[234,\"R\"],[123,\"Tableau\"],[123,\"PostgreSQL\"],[234,\"PowerBI\"],[234,\"SQL Server\"],[147,\"Python\"],[147,\"Tableau\"],[147,\"Java\"],[147,\"PostgreSQL\"],[256,\"Tableau\"],[102,\"DataAnalysis\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,57 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3358",
|
||||
"questionFrontendId": "100253",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653965,
|
||||
"title": "Friends With No Mutual Friends",
|
||||
"titleSlug": "friends-with-no-mutual-friends",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"17\", \"totalSubmission\": \"39\", \"totalAcceptedRaw\": 17, \"totalSubmissionRaw\": 39, \"acRate\": \"43.6%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Friends\":[\"user_id1\",\"user_id2\"]},\"rows\":{\"Friends\":[[1,2],[2,3],[2,4],[1,5],[6,7],[3,4],[2,5],[8,9]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Friends( user_id1 int, user_id2 int)\"],\"mssql\":[\"Create Table Friends( user_id1 int, user_id2 int)\"],\"oraclesql\":[\"Create Table Friends( user_id1 int, user_id2 int)\"],\"database\":true,\"name\":\"friends_with_no_mutual_friends\",\"pythondata\":[\"Friends = pd.DataFrame([], columns=['user_id1', 'user_id2']).astype({'user_id1':'Int64', 'user_id2':'Int64'})\\n\"],\"postgresql\":[\"CREATE TABLE Friends (\\n user_id1 int,\\n user_id2 int\\n);\"],\"database_schema\":{\"Friends\":{\"user_id1\":\"INT\",\"user_id2\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Friends( user_id1 int, user_id2 int)",
|
||||
"Truncate table Friends",
|
||||
"insert into Friends (user_id1, user_id2) values ('1', '2')",
|
||||
"insert into Friends (user_id1, user_id2) values ('2', '3')",
|
||||
"insert into Friends (user_id1, user_id2) values ('2', '4')",
|
||||
"insert into Friends (user_id1, user_id2) values ('1', '5')",
|
||||
"insert into Friends (user_id1, user_id2) values ('6', '7')",
|
||||
"insert into Friends (user_id1, user_id2) values ('3', '4')",
|
||||
"insert into Friends (user_id1, user_id2) values ('2', '5')",
|
||||
"insert into Friends (user_id1, user_id2) values ('8', '9')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Friends\":[\"user_id1\",\"user_id2\"]},\"rows\":{\"Friends\":[[1,2],[2,3],[2,4],[1,5],[6,7],[3,4],[2,5],[8,9]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
59
leetcode-cn/originData/[no content]maximize-items.json
Normal file
59
leetcode-cn/originData/[no content]maximize-items.json
Normal file
@@ -0,0 +1,59 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3257",
|
||||
"questionFrontendId": "100175",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653972,
|
||||
"title": "Maximize Items",
|
||||
"titleSlug": "maximize-items",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"13\", \"totalSubmission\": \"15\", \"totalAcceptedRaw\": 13, \"totalSubmissionRaw\": 15, \"acRate\": \"86.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Inventory\":[\"item_id\",\"item_type\",\"item_category\",\"square_footage\"]},\"rows\":{\"Inventory\":[[1374,\"prime_eligible\",\"Watches\",68.00],[4245,\"not_prime\",\"Art\",26.40],[5743,\"prime_eligible\",\"Software\",325.00],[8543,\"not_prime\",\"Clothing\",64.50],[2556,\"not_prime\",\"Shoes\",15.00],[2452,\"prime_eligible\",\"Scientific\",85.00],[3255,\"not_prime\",\"Furniture\",22.60],[1672,\"prime_eligible\",\"Beauty\",8.50],[4256,\"prime_eligible\",\"Furniture\",55.50],[6325,\"prime_eligible\",\"Food\",13.20]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))\"],\"mssql\":[\"Create table Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))\"],\"oraclesql\":[\"Create table Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))\"],\"database\":true,\"name\":\"maximize_items\",\"pythondata\":[\"Inventory = pd.DataFrame([], columns=['item_id', 'item_type', 'item_category', 'square_footage']).astype({'item_id':'Int64', 'item_type':'object', 'item_category':'object', 'square_footage':'Float64'})\\n\"],\"postgresql\":[\"Create table If Not Exists Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))\\n\"],\"database_schema\":{\"Inventory\":{\"item_id\":\"INT\",\"item_type\":\"VARCHAR(50)\",\"item_category\":\"VARCHAR(50)\",\"square_footage\":\"DECIMAL(10, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))",
|
||||
"Truncate table Inventory",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('1374', 'prime_eligible', 'Watches', '68.0')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('4245', 'not_prime', 'Art', '26.4')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('5743', 'prime_eligible', 'Software', '325.0')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('8543', 'not_prime', 'Clothing', '64.5')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('2556', 'not_prime', 'Shoes', '15.0')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('2452', 'prime_eligible', 'Scientific', '85.0')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('3255', 'not_prime', 'Furniture', '22.6')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('1672', 'prime_eligible', 'Beauty', '8.5')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('4256', 'prime_eligible', 'Furniture', '55.5')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('6325', 'prime_eligible', 'Food', '13.2')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Inventory\":[\"item_id\",\"item_type\",\"item_category\",\"square_footage\"]},\"rows\":{\"Inventory\":[[1374,\"prime_eligible\",\"Watches\",68.00],[4245,\"not_prime\",\"Art\",26.40],[5743,\"prime_eligible\",\"Software\",325.00],[8543,\"not_prime\",\"Clothing\",64.50],[2556,\"not_prime\",\"Shoes\",15.00],[2452,\"prime_eligible\",\"Scientific\",85.00],[3255,\"not_prime\",\"Furniture\",22.60],[1672,\"prime_eligible\",\"Beauty\",8.50],[4256,\"prime_eligible\",\"Furniture\",55.50],[6325,\"prime_eligible\",\"Food\",13.20]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,53 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3255",
|
||||
"questionFrontendId": "100173",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653968,
|
||||
"title": "Pizza Toppings Cost Analysis",
|
||||
"titleSlug": "pizza-toppings-cost-analysis",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"30\", \"totalSubmission\": \"42\", \"totalAcceptedRaw\": 30, \"totalSubmissionRaw\": 42, \"acRate\": \"71.4%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Toppings\":[\"topping_name\",\"cost\"]},\"rows\":{\"Toppings\":[[\"Pepperoni\",0.50],[\"Sausage\",0.70],[\"Chicken\",0.55],[\"Extra Cheese\",0.40]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists Toppings(topping_name varchar(100), cost decimal(5,2))\"],\"mssql\":[\"Create table Toppings(topping_name varchar(100), cost decimal(5,2))\"],\"oraclesql\":[\"Create table Toppings(topping_name varchar(100), cost decimal(5,2))\"],\"database\":true,\"name\":\"cost_analysis\",\"pythondata\":[\"Toppings = pd.DataFrame([], columns=['topping_name', 'cost']).astype({'topping_name':'object', 'cost':'Float64'})\\n\"],\"postgresql\":[\"Create table if not exists Toppings(topping_name varchar(100), cost decimal(5,2))\\n\"],\"database_schema\":{\"Toppings\":{\"topping_name\":\"VARCHAR(100)\",\"cost\":\"DECIMAL(5, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists Toppings(topping_name varchar(100), cost decimal(5,2))",
|
||||
"Truncate table Toppings",
|
||||
"insert into Toppings (topping_name, cost) values ('Pepperoni', '0.5')",
|
||||
"insert into Toppings (topping_name, cost) values ('Sausage', '0.7')",
|
||||
"insert into Toppings (topping_name, cost) values ('Chicken', '0.55')",
|
||||
"insert into Toppings (topping_name, cost) values ('Extra Cheese', '0.4')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Toppings\":[\"topping_name\",\"cost\"]},\"rows\":{\"Toppings\":[[\"Pepperoni\",0.50],[\"Sausage\",0.70],[\"Chicken\",0.55],[\"Extra Cheese\",0.40]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
62
leetcode-cn/originData/[no content]snaps-analysis.json
Normal file
62
leetcode-cn/originData/[no content]snaps-analysis.json
Normal file
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3340",
|
||||
"questionFrontendId": "100239",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653966,
|
||||
"title": "Snaps Analysis",
|
||||
"titleSlug": "snaps-analysis",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"20\", \"totalSubmission\": \"47\", \"totalAcceptedRaw\": 20, \"totalSubmissionRaw\": 47, \"acRate\": \"42.6%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Activities\":[\"activity_id\",\"user_id\",\"activity_type\",\"time_spent\"],\"Age\":[\"user_id\",\"age_bucket\"]},\"rows\":{\"Activities\":[[7274,123,\"open\",4.50],[2425,123,\"send\",3.50],[1413,456,\"send\",5.67],[2536,456,\"open\",3.00],[8564,456,\"send\",8.24],[5235,789,\"send\",6.24],[4251,123,\"open\",1.25],[1435,789,\"open\",5.25]],\"Age\":[[123,\"31-35\"],[789,\"21-25\"],[456,\"26-30\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if Not Exists Activities(activity_id int, user_id int, activity_type ENUM('send', 'open'), time_spent decimal(5,2))\",\"Create table if not Exists Age( user_id int, age_bucket ENUM('21-25','26-30','31-35'))\"],\"mssql\":[\"Create table Activities (activity_id int, user_id int, activity_type varchar(30) NOT NULL CHECK (activity_type IN ('send','open')), time_spent decimal(5,2))\",\"Create table Age( user_id int, age_bucket varchar(30) NOT NULL CHECK ( age_bucket IN ('21-25','26-30','31-35')))\"],\"oraclesql\":[\"Create table Activities (activity_id int, user_id int, activity_type varchar(30) NOT NULL CHECK (activity_type IN ('send','open')), time_spent decimal(5,2))\",\"Create table Age( user_id int, age_bucket varchar(30) NOT NULL CHECK ( age_bucket IN ('21-25','26-30','31-35')))\"],\"database\":true,\"name\":\"snap_analysis\",\"pythondata\":[\"Activities = pd.DataFrame([], columns=['activity_id', 'user_id', 'activity_type', 'time_spent']).astype({'activity_id':'Int64', 'user_id':'Int64', 'activity_type':'object', 'time_spent':'Float64'})\\n\",\"Age = pd.DataFrame([], columns=['user_id', 'age_bucket']).astype({'user_id':'Int64', 'age_bucket':'object'})\\n\"],\"postgresql\":[\"CREATE TABLE Activities (\\n activity_id SERIAL PRIMARY KEY,\\n user_id INT,\\n activity_type VARCHAR(30) NOT NULL CHECK (activity_type IN ('send', 'open')),\\n time_spent DECIMAL(5,2)\\n);\",\"CREATE TABLE Age (\\n user_id INT,\\n age_bucket VARCHAR(30) NOT NULL CHECK (age_bucket IN ('21-25', '26-30', '31-35'))\\n);\"],\"database_schema\":{\"Activities\":{\"activity_id\":\"INT\",\"user_id\":\"INT\",\"activity_type\":\"ENUM('send', 'open')\",\"time_spent\":\"DECIMAL(5, 2)\"},\"Age\":{\"user_id\":\"INT\",\"age_bucket\":\"ENUM('21-25', '26-30', '31-35')\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if Not Exists Activities(activity_id int, user_id int, activity_type ENUM('send', 'open'), time_spent decimal(5,2))",
|
||||
"Create table if not Exists Age( user_id int, age_bucket ENUM('21-25','26-30','31-35'))",
|
||||
"Truncate table Activities",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('7274', '123', 'open', '4.5')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('2425', '123', 'send', '3.5')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('1413', '456', 'send', '5.67')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('2536', '456', 'open', '3.0')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('8564', '456', 'send', '8.24')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('5235', '789', 'send', '6.24')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('4251', '123', 'open', '1.25')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('1435', '789', 'open', '5.25')",
|
||||
"Truncate table Age",
|
||||
"insert into Age (user_id, age_bucket) values ('123', '31-35')",
|
||||
"insert into Age (user_id, age_bucket) values ('789', '21-25')",
|
||||
"insert into Age (user_id, age_bucket) values ('456', '26-30')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Activities\":[\"activity_id\",\"user_id\",\"activity_type\",\"time_spent\"],\"Age\":[\"user_id\",\"age_bucket\"]},\"rows\":{\"Activities\":[[7274,123,\"open\",4.50],[2425,123,\"send\",3.50],[1413,456,\"send\",5.67],[2536,456,\"open\",3.00],[8564,456,\"send\",8.24],[5235,789,\"send\",6.24],[4251,123,\"open\",1.25],[1435,789,\"open\",5.25]],\"Age\":[[123,\"31-35\"],[789,\"21-25\"],[456,\"26-30\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
63
leetcode-cn/originData/[no content]top-percentile-fraud.json
Normal file
63
leetcode-cn/originData/[no content]top-percentile-fraud.json
Normal file
@@ -0,0 +1,63 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3339",
|
||||
"questionFrontendId": "100238",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653969,
|
||||
"title": "Top Percentile Fraud",
|
||||
"titleSlug": "top-percentile-fraud",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"12\", \"totalSubmission\": \"20\", \"totalAcceptedRaw\": 12, \"totalSubmissionRaw\": 20, \"acRate\": \"60.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Fraud\":[\"policy_id\",\"state\",\"fraud_score\"]},\"rows\":{\"Fraud\":[[1,\"California\",0.92],[2,\"California\",0.68],[3,\"California\",0.17],[4,\"New York\",0.94],[5,\"New York\",0.81],[6,\"New York\",0.77],[7,\"Texas\",0.98],[8,\"Texas\",0.97],[9,\"Texas\",0.96],[10,\"Florida\",0.97],[11,\"Florida\",0.98],[12,\"Florida\",0.78],[13,\"Florida\",0.88],[14,\"Florida\",0.66]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Fraud (policy_id int, state varchar(50), fraud_score decimal(5,2))\"],\"mssql\":[\"Create table Fraud (policy_id int, state varchar(50), fraud_score decimal(5,2))\"],\"oraclesql\":[\"Create table Fraud (policy_id int, state varchar(50), fraud_score decimal(10,2))\"],\"database\":true,\"name\":\"top_percentile_fraud\",\"pythondata\":[\"Fraud = pd.DataFrame([], columns=['policy_id', 'state', 'fraud_score']).astype({'policy_id':'Int64', 'state':'object', 'fraud_score':'Float64'})\\n\"],\"postgresql\":[\"Create table If Not Exists Fraud (policy_id int, state varchar(50), fraud_score decimal(5,2))\\n\"],\"database_schema\":{\"Fraud\":{\"policy_id\":\"INT\",\"state\":\"VARCHAR(50)\",\"fraud_score\":\"DECIMAL(5, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Fraud (policy_id int, state varchar(50), fraud_score decimal(5,2))",
|
||||
"Truncate table Fraud",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('1', 'California', '0.92')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('2', 'California', '0.68')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('3', 'California', '0.17')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('4', 'New York', '0.94')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('5', 'New York', '0.81')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('6', 'New York', '0.77')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('7', 'Texas', '0.98')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('8', 'Texas', '0.97')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('9', 'Texas', '0.96')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('10', 'Florida', '0.97')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('11', 'Florida', '0.98')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('12', 'Florida', '0.78')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('13', 'Florida', '0.88')",
|
||||
"insert into Fraud (policy_id, state, fraud_score) values ('14', 'Florida', '0.66')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Fraud\":[\"policy_id\",\"state\",\"fraud_score\"]},\"rows\":{\"Fraud\":[[1,\"California\",0.92],[2,\"California\",0.68],[3,\"California\",0.17],[4,\"New York\",0.94],[5,\"New York\",0.81],[6,\"New York\",0.77],[7,\"Texas\",0.98],[8,\"Texas\",0.97],[9,\"Texas\",0.96],[10,\"Florida\",0.97],[11,\"Florida\",0.98],[12,\"Florida\",0.78],[13,\"Florida\",0.88],[14,\"Florida\",0.66]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,60 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3366",
|
||||
"questionFrontendId": "100261",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653970,
|
||||
"title": "User Activities within Time Bounds",
|
||||
"titleSlug": "user-activities-within-time-bounds",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"10\", \"totalSubmission\": \"32\", \"totalAcceptedRaw\": 10, \"totalSubmissionRaw\": 32, \"acRate\": \"31.2%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Sessions\":[\"user_id\",\"session_start\",\"session_end\",\"session_id\",\"session_type\"]},\"rows\":{\"Sessions\":[[101,\"2023-11-01 08:00:00\",\"2023-11-01 09:00:00\",1,\"Viewer\"],[101,\"2023-11-01 10:00:00\",\"2023-11-01 11:00:00\",2,\"Streamer\"],[102,\"2023-11-01 13:00:00\",\"2023-11-01 14:00:00\",3,\"Viewer\"],[102,\"2023-11-01 15:00:00\",\"2023-11-01 16:00:00\",4,\"Viewer\"],[101,\"2023-11-02 09:00:00\",\"2023-11-02 10:00:00\",5,\"Viewer\"],[102,\"2023-11-02 12:00:00\",\"2023-11-02 13:00:00\",6,\"Streamer\"],[101,\"2023-11-02 13:00:00\",\"2023-11-02 14:00:00\",7,\"Streamer\"],[102,\"2023-11-02 16:00:00\",\"2023-11-02 17:00:00\",8,\"Viewer\"],[103,\"2023-11-01 08:00:00\",\"2023-11-01 09:00:00\",9,\"Viewer\"],[103,\"2023-11-02 20:00:00\",\"2023-11-02 23:00:00\",10,\"Viewer\"],[103,\"2023-11-03 09:00:00\",\"2023-11-03 10:00:00\",11,\"Viewer\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Sessions (user_id int, session_start datetime, session_end datetime, session_id int, session_type ENUM('Viewer','Streamer'))\"],\"mssql\":[\"Create table Sessions (user_id int, session_start datetime, session_end datetime, session_id int, session_type varchar(20) NOT NULL CHECK (session_type in ('Viewer', 'Streamer' )))\"],\"oraclesql\":[\"Create table Sessions (user_id int, session_start date, session_end date, session_id int, session_type varchar(20) NOT NULL CHECK (session_type in ('Viewer', 'Streamer' )))\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD HH24:MI:SS'\"],\"database\":true,\"name\":\"user_activities\",\"postgresql\":[\"CREATE TABLE Sessions (\\n user_id INT,\\n session_start TIMESTAMP,\\n session_end TIMESTAMP,\\n session_id INT,\\n session_type VARCHAR(20) NOT NULL CHECK (session_type IN ('Viewer', 'Streamer'))\\n);\\n\"],\"pythondata\":[\"Sessions = pd.DataFrame(columns=['user_id', 'session_start', 'session_end', 'session_id', 'session_type']).astype({'user_id': 'Int64', 'session_start': 'datetime64[ns]', 'session_end': 'datetime64[ns]', 'session_id': 'Int64', 'session_type': 'object'})\\n\"],\"database_schema\":{\"Sessions\":{\"user_id\":\"INT\",\"session_start\":\"DATETIME\",\"session_end\":\"DATETIME\",\"session_id\":\"INT\",\"session_type\":\"ENUM('Viewer', 'Streamer')\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Sessions (user_id int, session_start datetime, session_end datetime, session_id int, session_type ENUM('Viewer','Streamer'))",
|
||||
"Truncate table Sessions",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('101', '2023-11-01 08:00:00', '2023-11-01 09:00:00', '1', 'Viewer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('101', '2023-11-01 10:00:00', '2023-11-01 11:00:00', '2', 'Streamer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('102', '2023-11-01 13:00:00', '2023-11-01 14:00:00', '3', 'Viewer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('102', '2023-11-01 15:00:00', '2023-11-01 16:00:00', '4', 'Viewer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('101', '2023-11-02 09:00:00', '2023-11-02 10:00:00', '5', 'Viewer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('102', '2023-11-02 12:00:00', '2023-11-02 13:00:00', '6', 'Streamer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('101', '2023-11-02 13:00:00', '2023-11-02 14:00:00', '7', 'Streamer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('102', '2023-11-02 16:00:00', '2023-11-02 17:00:00', '8', 'Viewer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('103', '2023-11-01 08:00:00', '2023-11-01 09:00:00', '9', 'Viewer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('103', '2023-11-02 20:00:00', '2023-11-02 23:00:00', '10', 'Viewer')",
|
||||
"insert into Sessions (user_id, session_start, session_end, session_id, session_type) values ('103', '2023-11-03 09:00:00', '2023-11-03 10:00:00', '11', 'Viewer')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Sessions\":[\"user_id\",\"session_start\",\"session_end\",\"session_id\",\"session_type\"]},\"rows\":{\"Sessions\":[[101,\"2023-11-01 08:00:00\",\"2023-11-01 09:00:00\",1,\"Viewer\"],[101,\"2023-11-01 10:00:00\",\"2023-11-01 11:00:00\",2,\"Streamer\"],[102,\"2023-11-01 13:00:00\",\"2023-11-01 14:00:00\",3,\"Viewer\"],[102,\"2023-11-01 15:00:00\",\"2023-11-01 16:00:00\",4,\"Viewer\"],[101,\"2023-11-02 09:00:00\",\"2023-11-02 10:00:00\",5,\"Viewer\"],[102,\"2023-11-02 12:00:00\",\"2023-11-02 13:00:00\",6,\"Streamer\"],[101,\"2023-11-02 13:00:00\",\"2023-11-02 14:00:00\",7,\"Streamer\"],[102,\"2023-11-02 16:00:00\",\"2023-11-02 17:00:00\",8,\"Viewer\"],[103,\"2023-11-01 08:00:00\",\"2023-11-01 09:00:00\",9,\"Viewer\"],[103,\"2023-11-02 20:00:00\",\"2023-11-02 23:00:00\",10,\"Viewer\"],[103,\"2023-11-03 09:00:00\",\"2023-11-03 10:00:00\",11,\"Viewer\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
179
leetcode-cn/originData/earliest-second-to-mark-indices-i.json
Normal file
179
leetcode-cn/originData/earliest-second-to-mark-indices-i.json
Normal file
File diff suppressed because one or more lines are too long
188
leetcode-cn/originData/earliest-second-to-mark-indices-ii.json
Normal file
188
leetcode-cn/originData/earliest-second-to-mark-indices-ii.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
182
leetcode-cn/originData/split-the-array.json
Normal file
182
leetcode-cn/originData/split-the-array.json
Normal file
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user