mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-09-05 15:31:43 +08:00
存量题库数据更新
This commit is contained in:
@@ -1,31 +1,26 @@
|
||||
<p>Given an array <code>nums</code> which consists of non-negative integers and an integer <code>m</code>, you can split the array into <code>m</code> non-empty continuous subarrays.</p>
|
||||
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, split <code>nums</code> into <code>k</code> non-empty subarrays such that the largest sum of any subarray is <strong>minimized</strong>.</p>
|
||||
|
||||
<p>Write an algorithm to minimize the largest sum among these <code>m</code> subarrays.</p>
|
||||
<p>Return <em>the minimized largest sum of the split</em>.</p>
|
||||
|
||||
<p>A <strong>subarray</strong> is a contiguous part of the array.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Example 1:</strong></p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> nums = [7,2,5,10,8], m = 2
|
||||
<strong>Input:</strong> nums = [7,2,5,10,8], k = 2
|
||||
<strong>Output:</strong> 18
|
||||
<strong>Explanation:</strong>
|
||||
There are four ways to split nums into two subarrays.
|
||||
The best way is to split it into [7,2,5] and [10,8],
|
||||
where the largest sum among the two subarrays is only 18.
|
||||
<strong>Explanation:</strong> There are four ways to split nums into two subarrays.
|
||||
The best way is to split it into [7,2,5] and [10,8], where the largest sum among the two subarrays is only 18.
|
||||
</pre>
|
||||
|
||||
<p><strong>Example 2:</strong></p>
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> nums = [1,2,3,4,5], m = 2
|
||||
<strong>Input:</strong> nums = [1,2,3,4,5], k = 2
|
||||
<strong>Output:</strong> 9
|
||||
</pre>
|
||||
|
||||
<p><strong>Example 3:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> nums = [1,4,4], m = 3
|
||||
<strong>Output:</strong> 4
|
||||
<strong>Explanation:</strong> There are four ways to split nums into two subarrays.
|
||||
The best way is to split it into [1,2,3] and [4,5], where the largest sum among the two subarrays is only 9.
|
||||
</pre>
|
||||
|
||||
<p> </p>
|
||||
@@ -34,5 +29,5 @@ where the largest sum among the two subarrays is only 18.
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 1000</code></li>
|
||||
<li><code>0 <= nums[i] <= 10<sup>6</sup></code></li>
|
||||
<li><code>1 <= m <= min(50, nums.length)</code></li>
|
||||
<li><code>1 <= k <= min(50, nums.length)</code></li>
|
||||
</ul>
|
||||
|
Reference in New Issue
Block a user