1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-05 23:41:41 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee

存量题库数据更新

This commit is contained in:
2023-12-09 18:42:21 +08:00
parent a788808cd7
commit c198538f10
10843 changed files with 288489 additions and 248355 deletions

View File

@@ -2,14 +2,14 @@
"data": {
"question": {
"questionId": "3075",
"questionFrontendId": "100016",
"categoryTitle": "Algorithms",
"questionFrontendId": "2883",
"categoryTitle": "pandas",
"boundTopicId": 2467491,
"title": "Drop Missing Data",
"titleSlug": "drop-missing-data",
"content": "<pre>\nDataFrame students\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n</pre>\n\n<p>There are some rows having missing values in the <code>name</code> column.</p>\n\n<p>Write a solution to remove the rows with missing values.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:\n</strong>+------------+-------+-----+\n| student_id | name | age |\n+------------+-------+-----+\n| 32 | Piper | 5 |\n| 217 | Grace | 19 |\n| 779 | None | 20 |\n| 849 | None | 14 |\n+------------+-------+-----+\n<strong>Output:\n</strong>+------------+-------+-----+\n| student_id | name | age |\n+------------+-------+-----+\n| 32 | Piper | 5 |\n| 217 | Grace | 19 |\n+------------+-------+-----+\n<strong>Explanation:</strong> \nStudents with ids 779 and 849 have empty values in the name column, so they will be removed.</pre>\n",
"translatedTitle": null,
"translatedContent": null,
"content": "<pre>\nDataFrame students\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n</pre>\n\n<p>There are some rows having missing values in the <code>name</code> column.</p>\n\n<p>Write a solution to remove the rows with missing values.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:\n</strong>+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 32 | Piper | 5 |\n| 217 | None | 19 |\n| 779 | Georgia | 20 |\n| 849 | Willow | 14 |\n+------------+---------+-----+\n<strong>Output:\n</strong>+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 32 | Piper | 5 |\n| 779 | Georgia | 20 | \n| 849 | Willow | 14 | \n+------------+---------+-----+\n<strong>Explanation:</strong> \nStudent with id 217 havs empty value in the name column, so it will be removed.</pre>\n",
"translatedTitle": "删去丢失的数据",
"translatedContent": "<pre>\nDataFrame students\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n</pre>\n\n<p>在 <code>name</code> 列里有一些具有缺失值的行。</p>\n\n<p>编写一个解决方案,删除具有缺失值的行。</p>\n\n<p>返回结果格式如下示例所示。</p>\n\n<p>&nbsp;</p>\n\n<p><b>示例 1:</b></p>\n\n<pre>\n<strong>输入:\n</strong>+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 32 | Piper | 5 |\n| 217 | None | 19 |\n| 779 | Georgia | 20 |\n| 849 | Willow | 14 |\n+------------+---------+-----+\n<strong>输出:\n</strong>+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 32 | Piper | 5 |\n| 779 | Georgia | 20 | \n| 849 | Willow | 14 | \n+------------+---------+-----+\n<b>解释:\n</b>学号为 217 的学生所在行在 name 列中有空值,因此这一行将被删除。</pre>\n",
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 0,
@@ -28,13 +28,13 @@
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"14\", \"totalSubmission\": \"14\", \"totalAcceptedRaw\": 14, \"totalSubmissionRaw\": 14, \"acRate\": \"100.0%\"}",
"stats": "{\"totalAccepted\": \"1.4K\", \"totalSubmission\": \"2.4K\", \"totalAcceptedRaw\": 1407, \"totalSubmissionRaw\": 2375, \"acRate\": \"59.2%\"}",
"hints": [
"Consider using a build-in function in pandas library to remove the rows with missing values based on specified data."
],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[32,\"Piper\",5],[217,\"Grace\",19],[779,null,20],[849,null,14]]}}",
"sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[32,\"Piper\",5],[217,null,19],[779,\"Georgia\",20],[849,\"Willow\",14]]}}",
"metaData": "{\n \"pythondata\": [\n \"students = pd.DataFrame([], columns=['student_id', 'name', 'age']).astype({'student_id':'Int64', 'name':'object', 'age':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"dropMissingData\",\n \"languages\": [\n \"pythondata\"\n ]\n}",
"judgerAvailable": true,
"judgeType": "large",
@@ -48,7 +48,7 @@
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[32,\"Piper\",5],[217,\"Grace\",19],[779,null,20],[849,null,14]]}}",
"exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[32,\"Piper\",5],[217,null,19],[779,\"Georgia\",20],[849,\"Willow\",14]]}}",
"__typename": "QuestionNode"
}
}