1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-06 07:51:41 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee

存量题库数据更新

This commit is contained in:
2023-12-09 18:42:21 +08:00
parent a788808cd7
commit c198538f10
10843 changed files with 288489 additions and 248355 deletions

View File

@@ -12,10 +12,10 @@
<p>Starting from the point <code>(0, 0)</code>, return <em>the minimum steps you need to walk to cut off all the trees</em>. If you cannot cut off all the trees, return <code>-1</code>.</p>
<p>You are guaranteed that no two trees have the same height, and there is at least one tree needs to be cut off.</p>
<p><strong>Note:</strong> The input is generated such that no two trees have the same height, and there is at least one tree needs to be cut off.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2020/11/26/trees1.jpg" style="width: 242px; height: 242px;" />
<pre>
<strong>Input:</strong> forest = [[1,2,3],[0,0,4],[7,6,5]]
@@ -23,7 +23,7 @@
<strong>Explanation:</strong> Following the path above allows you to cut off the trees from shortest to tallest in 6 steps.
</pre>
<p><strong>Example 2:</strong></p>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2020/11/26/trees2.jpg" style="width: 242px; height: 242px;" />
<pre>
<strong>Input:</strong> forest = [[1,2,3],[0,0,0],[7,6,5]]
@@ -31,7 +31,7 @@
<strong>Explanation:</strong> The trees in the bottom row cannot be accessed as the middle row is blocked.
</pre>
<p><strong>Example 3:</strong></p>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> forest = [[2,3,4],[0,0,5],[8,7,6]]
@@ -48,4 +48,5 @@ Note that you can cut off the first tree at (0, 0) before making any steps.
<li><code>n == forest[i].length</code></li>
<li><code>1 &lt;= m, n &lt;= 50</code></li>
<li><code>0 &lt;= forest[i][j] &lt;= 10<sup>9</sup></code></li>
<li>Heights of all trees are <strong>distinct</strong>.</li>
</ul>