1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-04 15:01:40 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee

存量题库数据更新

This commit is contained in:
2023-12-09 18:42:21 +08:00
parent a788808cd7
commit c198538f10
10843 changed files with 288489 additions and 248355 deletions

View File

@@ -11,14 +11,45 @@
"translatedContent": null,
"isPaidOnly": false,
"difficulty": "Hard",
"likes": 42,
"likes": 136,
"dislikes": 1,
"isLiked": null,
"similarQuestions": "[{\"title\": \"Maximum XOR of Two Numbers in an Array\", \"titleSlug\": \"maximum-xor-of-two-numbers-in-an-array\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Maximum XOR With an Element From Array\", \"titleSlug\": \"maximum-xor-with-an-element-from-array\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]",
"exampleTestcases": "[1,2,3,4,5]\n[10,100]\n[500,520,2500,3000]",
"categoryTitle": "Algorithms",
"contributors": [],
"topicTags": [],
"topicTags": [
{
"name": "Array",
"slug": "array",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Hash Table",
"slug": "hash-table",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Bit Manipulation",
"slug": "bit-manipulation",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Trie",
"slug": "trie",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Sliding Window",
"slug": "sliding-window",
"translatedName": null,
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
@@ -136,7 +167,7 @@
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"2K\", \"totalSubmission\": \"10.1K\", \"totalAcceptedRaw\": 1955, \"totalSubmissionRaw\": 10116, \"acRate\": \"19.3%\"}",
"stats": "{\"totalAccepted\": \"4.7K\", \"totalSubmission\": \"16.3K\", \"totalAcceptedRaw\": 4652, \"totalSubmissionRaw\": 16320, \"acRate\": \"28.5%\"}",
"hints": [
"Sort the array, now let <code>x <= y</code> which means <code>|x - y| <= min(x, y)</code> can now be written as <code>y - x <= x</code> or in other words, <code>y <= 2 * x</code>.",
"If <code>x</code> and <code>y</code> have the same number of bits, try making<code>y</code>s bits different from x if possible for each bit starting from the second most significant bit.",