1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-05 23:41:41 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee

存量题库数据更新

This commit is contained in:
2023-12-09 18:42:21 +08:00
parent a788808cd7
commit c198538f10
10843 changed files with 288489 additions and 248355 deletions

View File

@@ -6,13 +6,13 @@
"boundTopicId": null,
"title": "Big Countries",
"titleSlug": "big-countries",
"content": "<p>Table: <code>World</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| name | varchar |\n| continent | varchar |\n| area | int |\n| population | int |\n| gdp | int |\n+-------------+---------+\nname is the primary key column for this table.\nEach row of this table gives information about the name of a country, the continent to which it belongs, its area, the population, and its GDP value.\n</pre>\n\n<p>&nbsp;</p>\n\n<p>A country is <strong>big</strong> if:</p>\n\n<ul>\n\t<li>it has an area of at least&nbsp;three million (i.e., <code>3000000 km<sup>2</sup></code>), or</li>\n\t<li>it has a population of at least&nbsp;twenty-five million (i.e., <code>25000000</code>).</li>\n</ul>\n\n<p>Write an SQL query to report the name, population, and area of the <strong>big countries</strong>.</p>\n\n<p>Return the result table in <strong>any order</strong>.</p>\n\n<p>The query result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong>Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nWorld table:\n+-------------+-----------+---------+------------+--------------+\n| name | continent | area | population | gdp |\n+-------------+-----------+---------+------------+--------------+\n| Afghanistan | Asia | 652230 | 25500100 | 20343000000 |\n| Albania | Europe | 28748 | 2831741 | 12960000000 |\n| Algeria | Africa | 2381741 | 37100000 | 188681000000 |\n| Andorra | Europe | 468 | 78115 | 3712000000 |\n| Angola | Africa | 1246700 | 20609294 | 100990000000 |\n+-------------+-----------+---------+------------+--------------+\n<strong>Output:</strong> \n+-------------+------------+---------+\n| name | population | area |\n+-------------+------------+---------+\n| Afghanistan | 25500100 | 652230 |\n| Algeria | 37100000 | 2381741 |\n+-------------+------------+---------+\n</pre>\n",
"content": "<p>Table: <code>World</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| name | varchar |\n| continent | varchar |\n| area | int |\n| population | int |\n| gdp | bigint |\n+-------------+---------+\nname is the primary key (column with unique values) for this table.\nEach row of this table gives information about the name of a country, the continent to which it belongs, its area, the population, and its GDP value.\n</pre>\n\n<p>&nbsp;</p>\n\n<p>A country is <strong>big</strong> if:</p>\n\n<ul>\n\t<li>it has an area of at least&nbsp;three million (i.e., <code>3000000 km<sup>2</sup></code>), or</li>\n\t<li>it has a population of at least&nbsp;twenty-five million (i.e., <code>25000000</code>).</li>\n</ul>\n\n<p>Write a solution to find the name, population, and area of the <strong>big countries</strong>.</p>\n\n<p>Return the result table in <strong>any order</strong>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nWorld table:\n+-------------+-----------+---------+------------+--------------+\n| name | continent | area | population | gdp |\n+-------------+-----------+---------+------------+--------------+\n| Afghanistan | Asia | 652230 | 25500100 | 20343000000 |\n| Albania | Europe | 28748 | 2831741 | 12960000000 |\n| Algeria | Africa | 2381741 | 37100000 | 188681000000 |\n| Andorra | Europe | 468 | 78115 | 3712000000 |\n| Angola | Africa | 1246700 | 20609294 | 100990000000 |\n+-------------+-----------+---------+------------+--------------+\n<strong>Output:</strong> \n+-------------+------------+---------+\n| name | population | area |\n+-------------+------------+---------+\n| Afghanistan | 25500100 | 652230 |\n| Algeria | 37100000 | 2381741 |\n+-------------+------------+---------+\n</pre>\n",
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 800,
"dislikes": 904,
"likes": 2403,
"dislikes": 1266,
"isLiked": null,
"similarQuestions": "[]",
"exampleTestcases": "{\"headers\": {\"World\": [\"name\", \"continent\",\t\"area\",\t\"population\", \"gdp\"]}, \"rows\": {\"World\": [[\"Afghanistan\", \"Asia\", 652230, 25500100, 20343000000], [\"Albania\", \"Europe\", 28748, 2831741, 12960000000], [\"Algeria\", \"Africa\", 2381741, 37100000, 188681000000], [\"Andorra\", \"Europe\", 468, 78115,\t3712000000], [\"Angola\", \"Africa\", 1246700, 20609294, 100990000000]]}}",
@@ -45,9 +45,21 @@
"langSlug": "oraclesql",
"code": "/* Write your PL/SQL query statement below */\n",
"__typename": "CodeSnippetNode"
},
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "PostgreSQL",
"langSlug": "postgresql",
"code": "-- Write your PostgreSQL query statement below\n",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"281.2K\", \"totalSubmission\": \"364.8K\", \"totalAcceptedRaw\": 281229, \"totalSubmissionRaw\": 364785, \"acRate\": \"77.1%\"}",
"stats": "{\"totalAccepted\": \"900.8K\", \"totalSubmission\": \"1.3M\", \"totalAcceptedRaw\": 900805, \"totalSubmissionRaw\": 1316610, \"acRate\": \"68.4%\"}",
"hints": [],
"solution": {
"id": "200",
@@ -59,11 +71,11 @@
},
"status": null,
"sampleTestCase": "{\"headers\": {\"World\": [\"name\", \"continent\",\t\"area\",\t\"population\", \"gdp\"]}, \"rows\": {\"World\": [[\"Afghanistan\", \"Asia\", 652230, 25500100, 20343000000], [\"Albania\", \"Europe\", 28748, 2831741, 12960000000], [\"Algeria\", \"Africa\", 2381741, 37100000, 188681000000], [\"Andorra\", \"Europe\", 468, 78115,\t3712000000], [\"Angola\", \"Africa\", 1246700, 20609294, 100990000000]]}}",
"metaData": "{\n \"mysql\": [\n \"Create table If Not Exists World (name varchar(255), continent varchar(255), area int, population int, gdp int)\"\n ],\n \"mssql\": [\n \"Create table World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)\"\n ],\n \"oraclesql\": [\n \"Create table World (name varchar(255), continent varchar(255), area int, population int, gdp int)\"\n ],\n \"database\": true\n}",
"metaData": "{\"mysql\": [\"Create table If Not Exists World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)\"], \"mssql\": [\"Create table World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)\"], \"oraclesql\": [\"Create table World (name varchar(255), continent varchar(255), area int, population int, gdp int)\"], \"database\": true, \"name\": \"big_countries\", \"pythondata\": [\"World = pd.DataFrame([], columns=['name', 'continent', 'area', 'population', 'gdp']).astype({'name':'object', 'continent':'object', 'area':'Int64', 'population':'Int64', 'gdp':'Int64'})\"], \"manual\": false, \"postgresql\": [\"Create table If Not Exists World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)\"], \"database_schema\": {\"World\": {\"name\": \"VARCHAR(255)\", \"continent\": \"VARCHAR(255)\", \"area\": \"INT\", \"population\": \"INT\", \"gdp\": \"BIGINT\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table If Not Exists World (name varchar(255), continent varchar(255), area int, population int, gdp int)",
"Create table If Not Exists World (name varchar(255), continent varchar(255), area int, population int, gdp bigint)",
"Truncate table World",
"insert into World (name, continent, area, population, gdp) values ('Afghanistan', 'Asia', '652230', '25500100', '20343000000')",
"insert into World (name, continent, area, population, gdp) values ('Albania', 'Europe', '28748', '2831741', '12960000000')",
@@ -74,7 +86,7 @@
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": false,
"envInfo": "{\"mysql\": [\"MySQL\", \"<p><code>MySQL 8.0</code>.</p>\"], \"mssql\": [\"MS SQL Server\", \"<p><code>mssql server 2019</code>.</p>\"], \"oraclesql\": [\"Oracle\", \"<p><code>Oracle Sql 11.2</code>.</p>\"]}",
"envInfo": "{\"mysql\": [\"MySQL\", \"<p><code>MySQL 8.0</code>.</p>\"], \"mssql\": [\"MS SQL Server\", \"<p><code>mssql server 2019</code>.</p>\"], \"oraclesql\": [\"Oracle\", \"<p><code>Oracle Sql 11.2</code>.</p>\"], \"pythondata\": [\"Pandas\", \"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0</p>\"], \"postgresql\": [\"PostgreSQL\", \"<p>PostgreSQL 16</p>\"]}",
"libraryUrl": null,
"adminUrl": null,
"challengeQuestion": null,