mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
update
This commit is contained in:
parent
f55b93a706
commit
b545ef1222
@ -1,6 +1,6 @@
|
||||
# 力扣题库(完整版)
|
||||
|
||||
> 最后更新日期: **2024.06.05**
|
||||
> 最后更新日期: **2024.06.25**
|
||||
>
|
||||
> 使用脚本前请务必仔细完整阅读本 `README.md` 文件
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
@ -0,0 +1,77 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3503",
|
||||
"questionFrontendId": "3188",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2814944,
|
||||
"title": "Find Top Scoring Students II",
|
||||
"titleSlug": "find-top-scoring-students-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "查找得分最高的学生 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"57\", \"totalSubmission\": \"106\", \"totalAcceptedRaw\": 57, \"totalSubmissionRaw\": 106, \"acRate\": \"53.8%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"major\"],\"courses\":[\"course_id\",\"name\",\"credits\",\"major\",\"mandatory\"],\"enrollments\":[\"student_id\",\"course_id\",\"semester\",\"grade\",\"GPA\"]},\"rows\":{\"students\":[[1,\"Alice\",\"Computer Science\"],[2,\"Bob\",\"Computer Science\"],[3,\"Charlie\",\"Mathematics\"],[4,\"David\",\"Mathematics\"]],\"courses\":[[101,\"Algorithms\",3,\"Computer Science\",\"Yes\"],[102,\"Data Structures\",3,\"Computer Science\",\"Yes\"],[103,\"Calculus\",4,\"Mathematics\",\"Yes\"],[104,\"Linear Algebra\",4,\"Mathematics\",\"Yes\"],[105,\"Machine Learning\",3,\"Computer Science\",\"No\"],[106,\"Probability\",3,\"Mathematics\",\"No\"],[107,\"Operating Systems\",3,\"Computer Science\",\"No\"],[108,\"Statistics\",3,\"Mathematics\",\"No\"]],\"enrollments\":[[1,101,\"Fall 2023\",\"A\",4.0],[1,102,\"Spring 2023\",\"A\",4.0],[1,105,\"Spring 2023\",\"A\",4.0],[1,107,\"Fall 2023\",\"B\",3.5],[2,101,\"Fall 2023\",\"A\",4.0],[2,102,\"Spring 2023\",\"B\",3.0],[3,103,\"Fall 2023\",\"A\",4.0],[3,104,\"Spring 2023\",\"A\",4.0],[3,106,\"Spring 2023\",\"A\",4.0],[3,108,\"Fall 2023\",\"B\",3.5],[4,103,\"Fall 2023\",\"B\",3.0],[4,104,\"Spring 2023\",\"B\",3.0]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists students (\\n student_id INT ,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n)\",\"CREATE TABLE if not exists courses (\\n course_id INT ,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255),\\n mandatory ENUM('yes', 'no') DEFAULT 'no'\\n)\",\"CREATE TABLE if not exists enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10),\\nGPA decimal(3,2)\\n\\n);\"],\"mssql\":[\"CREATE TABLE students (\\n student_id INT ,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n)\",\"CREATE TABLE courses (\\n course_id INT PRIMARY KEY,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255),\\n mandatory VARCHAR(3) CHECK (mandatory IN ('yes', 'no')) DEFAULT 'no'\\n)\",\"CREATE TABLE enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(1),\\n GPA DECIMAL(3,2)\\n)\"],\"oraclesql\":[\"CREATE TABLE students (\\n student_id NUMBER ,\\n name VARCHAR2(255),\\n major VARCHAR2(255)\\n)\",\"CREATE TABLE courses (\\n course_id NUMBER ,\\n name VARCHAR2(255),\\n credits NUMBER,\\n major VARCHAR2(255),\\n mandatory VARCHAR2(3) CHECK (mandatory IN ('Yes', 'No')) \\n)\",\"CREATE TABLE enrollments (\\n student_id NUMBER,\\n course_id NUMBER,\\n semester VARCHAR2(255),\\n grade VARCHAR2(1),\\n GPA Number (3,2)\\n)\"],\"database\":true,\"name\":\"find_top_scoring_students\",\"pythondata\":[\"students = pd.DataFrame([], columns=['student_id', 'name', 'major']).astype({\\n 'student_id': 'Int64', # Nullable integer type for student_id\\n 'name': 'string', # String type for names\\n 'major': 'string' # String type for majors\\n})\",\"courses = pd.DataFrame([], columns=['course_id', 'name', 'credits', 'major', 'mandatory']).astype({'course_id': 'Int64', 'name': 'string', 'credits': 'Int64', 'major': 'string', 'mandatory': 'string'})\\n\\n # pd.CategoricalDtype(categories=['yes', 'no'])\\n\",\"enrollments = pd.DataFrame([], columns=['student_id', 'course_id', 'semester', 'grade', 'GPA']).astype({'student_id': 'Int64', 'course_id': 'Int64', 'semester': 'string', 'grade': 'string', 'GPA': 'float'})\\n\"],\"postgresql\":[\"CREATE TABLE IF NOT EXISTS students (\\n student_id SERIAL,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n);\",\"CREATE TABLE courses (\\n course_id INTEGER, -- or SERIAL if you want auto-increment\\n name VARCHAR(255),\\n credits INTEGER, -- or NUMERIC if you need decimal places\\n major VARCHAR(255),\\n mandatory VARCHAR(3) CHECK (mandatory IN ('Yes', 'No'))\\n);\\n\",\"CREATE TABLE IF NOT EXISTS enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10),\\n GPA NUMERIC(3,2)\\n);\\n\"],\"database_schema\":{\"students\":{\"student_id\":\"INT\",\"name\":\"VARCHAR(255)\",\"major\":\"VARCHAR(255)\"},\"courses\":{\"course_id\":\"INT\",\"name\":\"VARCHAR(255)\",\"credits\":\"INT\",\"major\":\"VARCHAR(255)\",\"mandatory\":\"ENUM('yes', 'no')\"},\"enrollments\":{\"student_id\":\"INT\",\"course_id\":\"INT\",\"semester\":\"VARCHAR(255)\",\"grade\":\"VARCHAR(10)\",\"GPA\":\"DECIMAL(3, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE if not exists students (\n student_id INT ,\n name VARCHAR(255),\n major VARCHAR(255)\n)",
|
||||
"CREATE TABLE if not exists courses (\n course_id INT ,\n name VARCHAR(255),\n credits INT,\n major VARCHAR(255),\n mandatory ENUM('yes', 'no') DEFAULT 'no'\n)",
|
||||
"CREATE TABLE if not exists enrollments (\n student_id INT,\n course_id INT,\n semester VARCHAR(255),\n grade VARCHAR(10),\nGPA decimal(3,2)\n\n);",
|
||||
"Truncate table students",
|
||||
"insert into students (student_id, name, major) values ('1', 'Alice', 'Computer Science')",
|
||||
"insert into students (student_id, name, major) values ('2', 'Bob', 'Computer Science')",
|
||||
"insert into students (student_id, name, major) values ('3', 'Charlie', 'Mathematics')",
|
||||
"insert into students (student_id, name, major) values ('4', 'David', 'Mathematics')",
|
||||
"Truncate table courses",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('101', 'Algorithms', '3', 'Computer Science', 'Yes')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('102', 'Data Structures', '3', 'Computer Science', 'Yes')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('103', 'Calculus', '4', 'Mathematics', 'Yes')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('104', 'Linear Algebra', '4', 'Mathematics', 'Yes')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('105', 'Machine Learning', '3', 'Computer Science', 'No')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('106', 'Probability', '3', 'Mathematics', 'No')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('107', 'Operating Systems', '3', 'Computer Science', 'No')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('108', 'Statistics', '3', 'Mathematics', 'No')",
|
||||
"Truncate table enrollments",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('1', '101', 'Fall 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('1', '102', 'Spring 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('1', '105', 'Spring 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('1', '107', 'Fall 2023', 'B', '3.5')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('2', '101', 'Fall 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('2', '102', 'Spring 2023', 'B', '3.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('3', '103', 'Fall 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('3', '104', 'Spring 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('3', '106', 'Spring 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('3', '108', 'Fall 2023', 'B', '3.5')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('4', '103', 'Fall 2023', 'B', '3.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('4', '104', 'Spring 2023', 'B', '3.0')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"major\"],\"courses\":[\"course_id\",\"name\",\"credits\",\"major\",\"mandatory\"],\"enrollments\":[\"student_id\",\"course_id\",\"semester\",\"grade\",\"GPA\"]},\"rows\":{\"students\":[[1,\"Alice\",\"Computer Science\"],[2,\"Bob\",\"Computer Science\"],[3,\"Charlie\",\"Mathematics\"],[4,\"David\",\"Mathematics\"]],\"courses\":[[101,\"Algorithms\",3,\"Computer Science\",\"Yes\"],[102,\"Data Structures\",3,\"Computer Science\",\"Yes\"],[103,\"Calculus\",4,\"Mathematics\",\"Yes\"],[104,\"Linear Algebra\",4,\"Mathematics\",\"Yes\"],[105,\"Machine Learning\",3,\"Computer Science\",\"No\"],[106,\"Probability\",3,\"Mathematics\",\"No\"],[107,\"Operating Systems\",3,\"Computer Science\",\"No\"],[108,\"Statistics\",3,\"Mathematics\",\"No\"]],\"enrollments\":[[1,101,\"Fall 2023\",\"A\",4.0],[1,102,\"Spring 2023\",\"A\",4.0],[1,105,\"Spring 2023\",\"A\",4.0],[1,107,\"Fall 2023\",\"B\",3.5],[2,101,\"Fall 2023\",\"A\",4.0],[2,102,\"Spring 2023\",\"B\",3.0],[3,103,\"Fall 2023\",\"A\",4.0],[3,104,\"Spring 2023\",\"A\",4.0],[3,106,\"Spring 2023\",\"A\",4.0],[3,108,\"Fall 2023\",\"B\",3.5],[4,103,\"Fall 2023\",\"B\",3.0],[4,104,\"Spring 2023\",\"B\",3.0]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,76 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3488",
|
||||
"questionFrontendId": "3182",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2805903,
|
||||
"title": "Find Top Scoring Students",
|
||||
"titleSlug": "find-top-scoring-students",
|
||||
"content": null,
|
||||
"translatedTitle": "查找得分最高的学生",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"66\", \"totalSubmission\": \"131\", \"totalAcceptedRaw\": 66, \"totalSubmissionRaw\": 131, \"acRate\": \"50.4%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"major\"],\"courses\":[\"course_id\",\"name\",\"credits\",\"major\"],\"enrollments\":[\"student_id\",\"course_id\",\"semester\",\"grade\"]},\"rows\":{\"students\":[[1,\"Alice\",\"Computer Science\"],[2,\"Bob\",\"Computer Science\"],[3,\"Charlie\",\"Mathematics\"],[4,\"David\",\"Mathematics\"]],\"courses\":[[101,\"Algorithms\",3,\"Computer Science\"],[102,\"Data Structures\",3,\"Computer Science\"],[103,\"Calculus\",4,\"Mathematics\"],[104,\"Linear Algebra\",4,\"Mathematics\"]],\"enrollments\":[[1,101,\"Fall 2023\",\"A\"],[1,102,\"Fall 2023\",\"A\"],[2,101,\"Fall 2023\",\"B\"],[2,102,\"Fall 2023\",\"A\"],[3,103,\"Fall 2023\",\"A\"],[3,104,\"Fall 2023\",\"A\"],[4,103,\"Fall 2023\",\"A\"],[4,104,\"Fall 2023\",\"B\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists students (\\n student_id INT ,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n)\",\"CREATE TABLE if not exists courses (\\n course_id INT ,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255)\\n)\\n\",\"CREATE TABLE if not exists enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10)\\n\\n);\"],\"mssql\":[\"CREATE TABLE students (\\n student_id INT ,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n)\",\"CREATE TABLE courses (\\n course_id INT ,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255)\\n)\\n\",\"CREATE TABLE enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10)\\n\\n);\"],\"oraclesql\":[\"CREATE TABLE students (\\n student_id NUMBER ,\\n name VARCHAR2(255),\\n major VARCHAR2(255)\\n)\",\"CREATE TABLE courses (\\n course_id NUMBER,\\n name VARCHAR2(255),\\n credits NUMBER,\\n major VARCHAR2(255)\\n)\",\"CREATE TABLE enrollments (\\n student_id NUMBER,\\n course_id NUMBER,\\n semester VARCHAR2(255),\\n grade VARCHAR2(10) \\n \\n)\"],\"database\":true,\"name\":\"find_top_scoring_students\",\"pythondata\":[\"enrollments = pd.DataFrame([], columns=['student_id', 'course_id', 'semester', 'grade']).astype({\\n 'student_id': 'Int64', # Nullable integer type\\n 'course_id': 'Int64', # Nullable integer type\\n 'semester': 'object', # Object type for arbitrary strings\\n 'grade': 'object' # Object type for arbitrary strings\\n})\",\"students = pd.DataFrame([], columns=['student_id', 'name', 'major']).astype({\\n 'student_id': 'Int64', # Nullable integer type\\n 'name': 'object', # Object type for arbitrary strings, equivalent to VARCHAR\\n 'major': 'object' # Object type for arbitrary strings, equivalent to VARCHAR\\n})\",\"courses = pd.DataFrame([], columns=['course_id', 'name', 'credits', 'major']).astype({\\n 'course_id': 'Int64', # Nullable integer type\\n 'name': 'object', # Object type for arbitrary strings, equivalent to VARCHAR\\n 'credits': 'Int64', # Nullable integer type\\n 'major': 'object' # Object type for arbitrary strings, equivalent to VARCHAR\\n})\"],\"postgresql\":[\"CREATE TABLE IF NOT EXISTS students (\\n student_id INT,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS courses (\\n course_id INT,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10)\\n);\\n\"],\"database_schema\":{\"students\":{\"student_id\":\"INT\",\"name\":\"VARCHAR(255)\",\"major\":\"VARCHAR(255)\"},\"courses\":{\"course_id\":\"INT\",\"name\":\"VARCHAR(255)\",\"credits\":\"INT\",\"major\":\"VARCHAR(255)\"},\"enrollments\":{\"student_id\":\"INT\",\"course_id\":\"INT\",\"semester\":\"VARCHAR(255)\",\"grade\":\"VARCHAR(10)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE if not exists students (\n student_id INT ,\n name VARCHAR(255),\n major VARCHAR(255)\n)",
|
||||
"CREATE TABLE if not exists courses (\n course_id INT ,\n name VARCHAR(255),\n credits INT,\n major VARCHAR(255)\n)\n",
|
||||
"CREATE TABLE if not exists enrollments (\n student_id INT,\n course_id INT,\n semester VARCHAR(255),\n grade VARCHAR(10)\n\n);",
|
||||
"Truncate table students",
|
||||
"insert into students (student_id, name, major) values ('1', 'Alice', 'Computer Science')",
|
||||
"insert into students (student_id, name, major) values ('2', 'Bob', 'Computer Science')",
|
||||
"insert into students (student_id, name, major) values ('3', 'Charlie', 'Mathematics')",
|
||||
"insert into students (student_id, name, major) values ('4', 'David', 'Mathematics')",
|
||||
"Truncate table courses",
|
||||
"insert into courses (course_id, name, credits, major) values ('101', 'Algorithms', '3', 'Computer Science')",
|
||||
"insert into courses (course_id, name, credits, major) values ('102', 'Data Structures', '3', 'Computer Science')",
|
||||
"insert into courses (course_id, name, credits, major) values ('103', 'Calculus', '4', 'Mathematics')",
|
||||
"insert into courses (course_id, name, credits, major) values ('104', 'Linear Algebra', '4', 'Mathematics')",
|
||||
"Truncate table enrollments",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('1', '101', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('1', '102', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('2', '101', 'Fall 2023', 'B')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('2', '102', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('3', '103', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('3', '104', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('4', '103', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('4', '104', 'Fall 2023', 'B')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"major\"],\"courses\":[\"course_id\",\"name\",\"credits\",\"major\"],\"enrollments\":[\"student_id\",\"course_id\",\"semester\",\"grade\"]},\"rows\":{\"students\":[[1,\"Alice\",\"Computer Science\"],[2,\"Bob\",\"Computer Science\"],[3,\"Charlie\",\"Mathematics\"],[4,\"David\",\"Mathematics\"]],\"courses\":[[101,\"Algorithms\",3,\"Computer Science\"],[102,\"Data Structures\",3,\"Computer Science\"],[103,\"Calculus\",4,\"Mathematics\"],[104,\"Linear Algebra\",4,\"Mathematics\"]],\"enrollments\":[[1,101,\"Fall 2023\",\"A\"],[1,102,\"Fall 2023\",\"A\"],[2,101,\"Fall 2023\",\"B\"],[2,102,\"Fall 2023\",\"A\"],[3,103,\"Fall 2023\",\"A\"],[3,104,\"Fall 2023\",\"A\"],[4,103,\"Fall 2023\",\"A\"],[4,104,\"Fall 2023\",\"B\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
183
leetcode-cn/originData/clear-digits.json
Normal file
183
leetcode-cn/originData/clear-digits.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
165
leetcode-cn/originData/count-the-number-of-inversions.json
Normal file
165
leetcode-cn/originData/count-the-number-of-inversions.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
194
leetcode-cn/originData/find-the-n-th-value-after-k-seconds.json
Normal file
194
leetcode-cn/originData/find-the-n-th-value-after-k-seconds.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
185
leetcode-cn/originData/peaks-in-array.json
Normal file
185
leetcode-cn/originData/peaks-in-array.json
Normal file
File diff suppressed because one or more lines are too long
@ -0,0 +1,95 @@
|
||||
<p>给你两个整数 <code>n</code> 和 <code>k</code>。</p>
|
||||
|
||||
<p>最初,你有一个长度为 <code>n</code> 的整数数组 <code>a</code>,对所有 <code>0 <= i <= n - 1</code>,都有 <code>a[i] = 1</code> 。每过一秒,你会同时更新每个元素为其前面所有元素的和加上该元素本身。例如,一秒后,<code>a[0]</code> 保持不变,<code>a[1]</code> 变为 <code>a[0] + a[1]</code>,<code>a[2]</code> 变为 <code>a[0] + a[1] + a[2]</code>,以此类推。</p>
|
||||
|
||||
<p>返回 <code>k</code> 秒后 <code>a[n - 1]</code> 的<strong>值</strong>。</p>
|
||||
|
||||
<p>由于答案可能非常大,返回其对 <code>10<sup>9</sup> + 7</code> <strong>取余 </strong>后的结果。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">n = 4, k = 5</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">56</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<table border="1">
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>时间(秒)</th>
|
||||
<th>数组状态</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td>[1,1,1,1]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td>[1,2,3,4]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td>[1,3,6,10]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[1,4,10,20]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>4</td>
|
||||
<td>[1,5,15,35]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>5</td>
|
||||
<td>[1,6,21,56]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">n = 5, k = 3</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">35</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<table border="1">
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>时间(秒)</th>
|
||||
<th>数组状态</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td>[1,1,1,1,1]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td>[1,2,3,4,5]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td>[1,3,6,10,15]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[1,4,10,20,35]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= n, k <= 1000</code></li>
|
||||
</ul>
|
@ -0,0 +1,50 @@
|
||||
<p>给你一个二进制数组 <code>nums</code> 。</p>
|
||||
|
||||
<p>你可以对数组执行以下操作 <strong>任意</strong> 次(也可以 0 次):</p>
|
||||
|
||||
<ul>
|
||||
<li>选择数组中 <strong>任意连续</strong> 3 个元素,并将它们 <strong>全部反转</strong> 。</li>
|
||||
</ul>
|
||||
|
||||
<p><strong>反转</strong> 一个元素指的是将它的值从 0 变 1 ,或者从 1 变 0 。</p>
|
||||
|
||||
<p>请你返回将 <code>nums</code> 中所有元素变为 1 的 <strong>最少</strong> 操作次数。如果无法全部变成 1 ,返回 -1 。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [0,1,1,1,0,0]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>3</span></p>
|
||||
|
||||
<p><strong>解释:</strong><br />
|
||||
我们可以执行以下操作:</p>
|
||||
|
||||
<ul>
|
||||
<li>选择下标为 0 ,1 和 2 的元素并反转,得到 <code>nums = [<u><strong>1</strong></u>,<u><strong>0</strong></u>,<u><strong>0</strong></u>,1,0,0]</code> 。</li>
|
||||
<li>选择下标为 1 ,2 和 3 的元素并反转,得到 <code>nums = [1,<u><strong>1</strong></u>,<u><strong>1</strong></u>,<strong><u>0</u></strong>,0,0]</code> 。</li>
|
||||
<li>选择下标为 3 ,4 和 5 的元素并反转,得到 <code>nums = [1,1,1,<strong><u>1</u></strong>,<u><strong>1</strong></u>,<u><strong>1</strong></u>]</code> 。</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [0,1,1,1]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>-1</span></p>
|
||||
|
||||
<p><strong>解释:</strong><br />
|
||||
无法将所有元素都变为 1 。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>3 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>0 <= nums[i] <= 1</code></li>
|
||||
</ul>
|
@ -0,0 +1,55 @@
|
||||
<p>给你一个二进制数组 <code>nums</code> 。</p>
|
||||
|
||||
<p>你可以对数组执行以下操作 <strong>任意</strong> 次(也可以 0 次):</p>
|
||||
|
||||
<ul>
|
||||
<li>选择数组中 <strong>任意</strong> 一个下标 <code>i</code> ,并将从下标 <code>i</code> 开始一直到数组末尾 <strong>所有</strong> 元素 <strong>反转</strong> 。</li>
|
||||
</ul>
|
||||
|
||||
<p><b>反转</b> 一个元素指的是将它的值从 0 变 1 ,或者从 1 变 0 。</p>
|
||||
|
||||
<p>请你返回将 <code>nums</code> 中所有元素变为 1 的 <strong>最少</strong> 操作次数。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [0,1,1,0,1]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>4</span></p>
|
||||
|
||||
<p><strong>解释:</strong><br />
|
||||
我们可以执行以下操作:</p>
|
||||
|
||||
<ul>
|
||||
<li>选择下标 <code>i = 1</code> 执行操作,得到<span class="example-io"> <code>nums = [0,<u><strong>0</strong></u>,<u><strong>0</strong></u>,<u><strong>1</strong></u>,<u><strong>0</strong></u>]</code> 。</span></li>
|
||||
<li>选择下标 <code>i = 0</code> 执行操作,得到<span class="example-io"> <code>nums = [<u><strong>1</strong></u>,<u><strong>1</strong></u>,<u><strong>1</strong></u>,<u><strong>0</strong></u>,<u><strong>1</strong></u>]</code> 。</span></li>
|
||||
<li>选择下标 <code>i = 4</code> 执行操作,得到<span class="example-io"> <code>nums = [1,1,1,0,<u><strong>0</strong></u>]</code> 。</span></li>
|
||||
<li>选择下标 <code>i = 3</code> 执行操作,得到<span class="example-io"> <code>nums = [1,1,1,<u><strong>1</strong></u>,<u><strong>1</strong></u>]</code> 。</span></li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1,0,0,0]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>1</span></p>
|
||||
|
||||
<p><strong>解释:</strong><br />
|
||||
我们可以执行以下操作:</p>
|
||||
|
||||
<ul>
|
||||
<li>选择下标 <code>i = 1</code> 执行操作,得到<span class="example-io"> <code>nums = [1,<u><strong>1</strong></u>,<u><strong>1</strong></u>,<u><strong>1</strong></u>]</code> 。</span></li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>0 <= nums[i] <= 1</code></li>
|
||||
</ul>
|
@ -0,0 +1,40 @@
|
||||
<p>给你一个整数数组 <code>nums</code> 。一次操作中,你可以将 <code>nums</code> 中的 <strong>任意</strong> 一个元素增加或者减少 1 。</p>
|
||||
|
||||
<p>请你返回将 <code>nums</code> 中所有元素都可以被 3 整除的 <strong>最少</strong> 操作次数。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1,2,3,4]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>3</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>通过以下 3 个操作,数组中的所有元素都可以被 3 整除:</p>
|
||||
|
||||
<ul>
|
||||
<li>将 1 减少 1 。</li>
|
||||
<li>将 2 增加 1 。</li>
|
||||
<li>将 4 减少 1 。</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [3,6,9]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>0</span></p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 50</code></li>
|
||||
<li><code>1 <= nums[i] <= 50</code></li>
|
||||
</ul>
|
@ -0,0 +1,43 @@
|
||||
<p>给你一个二维 <strong>二进制 </strong>数组 <code>grid</code>。请你找出一个边在水平方向和竖直方向上、面积 <strong>最小</strong> 的矩形,并且满足 <code>grid</code> 中所有的 1 都在矩形的内部。</p>
|
||||
|
||||
<p>返回这个矩形可能的 <strong>最小 </strong>面积。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">grid = [[0,1,0],[1,0,1]]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">6</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/05/08/examplerect0.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 279px; height: 198px;" /></p>
|
||||
|
||||
<p>这个最小矩形的高度为 2,宽度为 3,因此面积为 <code>2 * 3 = 6</code>。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">grid = [[0,0],[1,0]]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">1</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/05/08/examplerect1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 204px; height: 201px;" /></p>
|
||||
|
||||
<p>这个最小矩形的高度和宽度都是 1,因此面积为 <code>1 * 1 = 1</code>。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= grid.length, grid[i].length <= 1000</code></li>
|
||||
<li><code>grid[i][j]</code> 是 0 或 1。</li>
|
||||
<li>输入保证 <code>grid</code> 中至少有一个 1 。</li>
|
||||
</ul>
|
@ -0,0 +1,53 @@
|
||||
<p>给你一个二维 <strong>二进制 </strong>数组 <code>grid</code>。你需要找到 3 个<strong> 不重叠</strong>、面积 <strong>非零</strong> 、边在水平方向和竖直方向上的矩形,并且满足 <code>grid</code> 中所有的 1 都在这些矩形的内部。</p>
|
||||
|
||||
<p>返回这些矩形面积之和的<strong> 最小 </strong>可能值。</p>
|
||||
|
||||
<p><strong>注意</strong>,这些矩形可以相接。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">grid = [[1,0,1],[1,1,1]]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">5</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/05/14/example0rect21.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 280px; height: 198px;" /></p>
|
||||
|
||||
<ul>
|
||||
<li>位于 <code>(0, 0)</code> 和 <code>(1, 0)</code> 的 1 被一个面积为 2 的矩形覆盖。</li>
|
||||
<li>位于 <code>(0, 2)</code> 和 <code>(1, 2)</code> 的 1 被一个面积为 2 的矩形覆盖。</li>
|
||||
<li>位于 <code>(1, 1)</code> 的 1 被一个面积为 1 的矩形覆盖。</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">grid = [[1,0,1,0],[0,1,0,1]]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">5</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/05/14/example1rect2.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 356px; height: 198px;" /></p>
|
||||
|
||||
<ul>
|
||||
<li>位于 <code>(0, 0)</code> 和 <code>(0, 2)</code> 的 1 被一个面积为 3 的矩形覆盖。</li>
|
||||
<li>位于 <code>(1, 1)</code> 的 1 被一个面积为 1 的矩形覆盖。</li>
|
||||
<li>位于 <code>(1, 3)</code> 的 1 被一个面积为 1 的矩形覆盖。</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= grid.length, grid[i].length <= 30</code></li>
|
||||
<li><code>grid[i][j]</code> 是 0 或 1。</li>
|
||||
<li>输入保证 <code>grid</code> 中至少有三个 1 。</li>
|
||||
</ul>
|
@ -0,0 +1,45 @@
|
||||
<p>给你一个整数数组 <code>rewardValues</code>,长度为 <code>n</code>,代表奖励的值。</p>
|
||||
|
||||
<p>最初,你的总奖励 <code>x</code> 为 0,所有下标都是<strong> 未标记 </strong>的。你可以执行以下操作 <strong>任意次 </strong>:</p>
|
||||
|
||||
<ul>
|
||||
<li>从区间 <code>[0, n - 1]</code> 中选择一个 <strong>未标记 </strong>的下标 <code>i</code>。</li>
|
||||
<li>如果 <code>rewardValues[i]</code> <strong>大于</strong> 你当前的总奖励 <code>x</code>,则将 <code>rewardValues[i]</code> 加到 <code>x</code> 上(即 <code>x = x + rewardValues[i]</code>),并<strong> 标记</strong> 下标 <code>i</code>。</li>
|
||||
</ul>
|
||||
|
||||
<p>以整数形式返回执行最优操作能够获得的<strong> 最大</strong><em> </em>总奖励。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">rewardValues = [1,1,3,3]</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">rewardValues = [1,6,4,3,2]</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">11</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= rewardValues.length <= 2000</code></li>
|
||||
<li><code>1 <= rewardValues[i] <= 2000</code></li>
|
||||
</ul>
|
@ -0,0 +1,45 @@
|
||||
<p>给你一个整数数组 <code>rewardValues</code>,长度为 <code>n</code>,代表奖励的值。</p>
|
||||
|
||||
<p>最初,你的总奖励 <code>x</code> 为 0,所有下标都是<strong> 未标记 </strong>的。你可以执行以下操作 <strong>任意次 </strong>:</p>
|
||||
|
||||
<ul>
|
||||
<li>从区间 <code>[0, n - 1]</code> 中选择一个 <strong>未标记 </strong>的下标 <code>i</code>。</li>
|
||||
<li>如果 <code>rewardValues[i]</code> <strong>大于</strong> 你当前的总奖励 <code>x</code>,则将 <code>rewardValues[i]</code> 加到 <code>x</code> 上(即 <code>x = x + rewardValues[i]</code>),并<strong> 标记</strong> 下标 <code>i</code>。</li>
|
||||
</ul>
|
||||
|
||||
<p>以整数形式返回执行最优操作能够获得的<strong> 最大</strong><em> </em>总奖励。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">rewardValues = [1,1,3,3]</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">rewardValues = [1,6,4,3,2]</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">11</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= rewardValues.length <= 5 * 10<sup>4</sup></code></li>
|
||||
<li><code>1 <= rewardValues[i] <= 5 * 10<sup>4</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,137 @@
|
||||
<p>给你两个 <strong>正整数 </strong><code>n</code> 和 <code>k</code>。有 <code>n</code> 个编号从 <code>0</code> 到 <code>n - 1</code> 的孩子按顺序从左到右站成一队。</p>
|
||||
|
||||
<p>最初,编号为 0 的孩子拿着一个球,并且向右传球。每过一秒,拿着球的孩子就会将球传给他旁边的孩子。一旦球到达队列的 <strong>任一端 </strong>,即编号为 0 的孩子或编号为 <code>n - 1</code> 的孩子处,传球方向就会<strong> 反转 </strong>。</p>
|
||||
|
||||
<p>返回 <code>k</code> 秒后接到球的孩子的编号。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">n = 3, k = 5</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">1</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>经过的时间</th>
|
||||
<th>孩子队列</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>0</code></td>
|
||||
<td><code>[<u>0</u>, 1, 2]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>1</code></td>
|
||||
<td><code>[0, <u>1</u>, 2]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>2</code></td>
|
||||
<td><code>[0, 1, <u>2</u>]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>3</code></td>
|
||||
<td><code>[0, <u>1</u>, 2]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>4</code></td>
|
||||
<td><code>[<u>0</u>, 1, 2]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>5</code></td>
|
||||
<td><code>[0, <u>1</u>, 2]</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">n = 5, k = 6</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>经过的时间</th>
|
||||
<th>孩子队列</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>0</code></td>
|
||||
<td><code>[<u>0</u>, 1, 2, 3, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>1</code></td>
|
||||
<td><code>[0, <u>1</u>, 2, 3, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>2</code></td>
|
||||
<td><code>[0, 1, <u>2</u>, 3, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>3</code></td>
|
||||
<td><code>[0, 1, 2, <u>3</u>, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>4</code></td>
|
||||
<td><code>[0, 1, 2, 3, <u>4</u>]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>5</code></td>
|
||||
<td><code>[0, 1, 2, <u>3</u>, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>6</code></td>
|
||||
<td><code>[0, 1, <u>2</u>, 3, 4]</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong><span class="example-io">n = 4, k = 2</span></p>
|
||||
|
||||
<p><strong>输出:</strong><span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>经过的时间</th>
|
||||
<th>孩子队列</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>0</code></td>
|
||||
<td><code>[<u>0</u>, 1, 2, 3]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>1</code></td>
|
||||
<td><code>[0, <u>1</u>, 2, 3]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>2</code></td>
|
||||
<td><code>[0, 1, <u>2</u>, 3]</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= n <= 50</code></li>
|
||||
<li><code>1 <= k <= 50</code></li>
|
||||
</ul>
|
@ -0,0 +1,53 @@
|
||||
<p>给你一个数组 <code>nums</code> 和一个整数 <code>k</code> 。你需要找到 <code>nums</code> 的一个 <span data-keyword="subarray-nonempty">子数组</span> ,满足子数组中所有元素按位或运算 <code>OR</code> 的值与 <code>k</code> 的 <strong>绝对差</strong> 尽可能 <strong>小</strong> 。换言之,你需要选择一个子数组 <code>nums[l..r]</code> 满足 <code>|k - (nums[l] OR nums[l + 1] ... OR nums[r])|</code> 最小。</p>
|
||||
|
||||
<p>请你返回 <strong>最小</strong> 的绝对差值。</p>
|
||||
|
||||
<p><strong>子数组 </strong>是数组中连续的 <strong>非空</strong> 元素序列。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1,2,4,5], k = 3</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>0</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>子数组 <code>nums[0..1]</code> 的按位 <code>OR</code> 运算值为 3 ,得到最小差值 <code>|3 - 3| = 0</code> 。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1,3,1,3], k = 2</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>1</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>子数组 <code>nums[1..1]</code> 的按位 <code>OR</code> 运算值为 3 ,得到最小差值 <code>|3 - 2| = 1</code> 。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1], k = 10</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>9</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>只有一个子数组,按位 <code>OR</code> 运算值为 1 ,得到最小差值 <code>|10 - 1| = 9</code> 。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
<li><code>1 <= k <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,70 @@
|
||||
<p>有 <code>n</code> 位玩家在进行比赛,玩家编号依次为 <code>0</code> 到 <code>n - 1</code> 。</p>
|
||||
|
||||
<p>给你一个长度为 <code>n</code> 的整数数组 <code>skills</code> 和一个 <strong>正</strong> 整数 <code>k</code> ,其中 <code>skills[i]</code> 是第 <code>i</code> 位玩家的技能等级。<code>skills</code> 中所有整数 <strong>互不相同</strong> 。</p>
|
||||
|
||||
<p>所有玩家从编号 <code>0</code> 到 <code>n - 1</code> 排成一列。</p>
|
||||
|
||||
<p>比赛进行方式如下:</p>
|
||||
|
||||
<ul>
|
||||
<li>队列中最前面两名玩家进行一场比赛,技能等级 <strong>更高</strong> 的玩家胜出。</li>
|
||||
<li>比赛后,获胜者保持在队列的开头,而失败者排到队列的末尾。</li>
|
||||
</ul>
|
||||
|
||||
<p>这个比赛的赢家是 <strong>第一位连续</strong> 赢下 <code>k</code> 场比赛的玩家。</p>
|
||||
|
||||
<p>请你返回这个比赛的赢家编号。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>skills = [4,2,6,3,9], k = 2</span></p>
|
||||
|
||||
<p><b>输出:</b>2</p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>一开始,队列里的玩家为 <code>[0,1,2,3,4]</code> 。比赛过程如下:</p>
|
||||
|
||||
<ul>
|
||||
<li>玩家 0 和 1 进行一场比赛,玩家 0 的技能等级高于玩家 1 ,玩家 0 胜出,队列变为 <code>[0,2,3,4,1]</code> 。</li>
|
||||
<li>玩家 0 和 2 进行一场比赛,玩家 2 的技能等级高于玩家 0 ,玩家 2 胜出,队列变为 <code>[2,3,4,1,0]</code> 。</li>
|
||||
<li>玩家 2 和 3 进行一场比赛,玩家 2 的技能等级高于玩家 3 ,玩家 2 胜出,队列变为 <code>[2,4,1,0,3]</code> 。</li>
|
||||
</ul>
|
||||
|
||||
<p>玩家 2 连续赢了 <code>k = 2</code> 场比赛,所以赢家是玩家 2 。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>skills = [2,5,4], k = 3</span></p>
|
||||
|
||||
<p><b>输出:</b>1</p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>一开始,队列里的玩家为 <code>[0,1,2]</code> 。比赛过程如下:</p>
|
||||
|
||||
<ul>
|
||||
<li>玩家 0 和 1 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 <code>[1,2,0]</code> 。</li>
|
||||
<li>玩家 1 和 2 进行一场比赛,玩家 1 的技能等级高于玩家 2 ,玩家 1 胜出,队列变为 <code>[1,0,2]</code> 。</li>
|
||||
<li>玩家 1 和 0 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 <code>[1,2,0]</code> 。</li>
|
||||
</ul>
|
||||
|
||||
<p>玩家 1 连续赢了 <code>k = 3</code> 场比赛,所以赢家是玩家 1 。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>n == skills.length</code></li>
|
||||
<li><code>2 <= n <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= k <= 10<sup>9</sup></code></li>
|
||||
<li><code>1 <= skills[i] <= 10<sup>6</sup></code></li>
|
||||
<li><code>skills</code> 中的整数互不相同。</li>
|
||||
</ul>
|
67
leetcode-cn/problem (Chinese)/数组中的峰值 [peaks-in-array].html
Normal file
67
leetcode-cn/problem (Chinese)/数组中的峰值 [peaks-in-array].html
Normal file
@ -0,0 +1,67 @@
|
||||
<p>数组 <code>arr</code> 中 <strong>大于</strong> 前面和后面相邻元素的元素被称为 <strong>峰值</strong> 元素。</p>
|
||||
|
||||
<p>给你一个整数数组 <code>nums</code> 和一个二维整数数组 <code>queries</code> 。</p>
|
||||
|
||||
<p>你需要处理以下两种类型的操作:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>queries[i] = [1, l<sub>i</sub>, r<sub>i</sub>]</code> ,求出子数组 <code>nums[l<sub>i</sub>..r<sub>i</sub>]</code> 中 <strong>峰值</strong> 元素的数目。<!-- notionvc: 73b20b7c-e1ab-4dac-86d0-13761094a9ae --></li>
|
||||
<li><code>queries[i] = [2, index<sub>i</sub>, val<sub>i</sub>]</code> ,将 <code>nums[index<sub>i</sub>]</code> 变为 <code><font face="monospace">val<sub>i</sub></font></code><font face="monospace"> 。</font></li>
|
||||
</ul>
|
||||
|
||||
<p>请你返回一个数组 <code>answer</code> ,它依次包含每一个第一种操作的答案。<!-- notionvc: a9ccef22-4061-4b5a-b4cc-a2b2a0e12f30 --></p>
|
||||
|
||||
<p><strong>注意:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li>子数组中 <strong>第一个</strong> 和 <strong>最后一个</strong> 元素都 <strong>不是</strong> 峰值元素。</li>
|
||||
</ul>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [3,1,4,2,5], queries = [[2,3,4],[1,0,4]]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>[0]</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>第一个操作:我们将 <code>nums[3]</code> 变为 4 ,<code>nums</code> 变为 <code>[3,1,4,4,5]</code> 。</p>
|
||||
|
||||
<p>第二个操作:<code>[3,1,4,4,5]</code> 中峰值元素的数目为 0 。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [4,1,4,2,1,5], queries = [[2,2,4],[1,0,2],[1,0,4]]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>[0,1]</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>第一个操作:<code>nums[2]</code> 变为 4 ,它已经是 4 了,所以保持不变。</p>
|
||||
|
||||
<p>第二个操作:<code>[4,1,4]</code> 中峰值元素的数目为 0 。</p>
|
||||
|
||||
<p>第三个操作:第二个 4 是 <code>[4,1,4,2,1]</code> 中的峰值元素。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>3 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= queries.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>queries[i][0] == 1</code> 或者 <code>queries[i][0] == 2</code></li>
|
||||
<li>对于所有的 <code>i</code> ,都有:
|
||||
<ul>
|
||||
<li><code>queries[i][0] == 1</code> :<code>0 <= queries[i][1] <= queries[i][2] <= nums.length - 1</code></li>
|
||||
<li><code>queries[i][0] == 2</code> :<code>0 <= queries[i][1] <= nums.length - 1</code>, <code>1 <= queries[i][2] <= 10<sup>5</sup></code></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
@ -0,0 +1,44 @@
|
||||
<p>一个魔法师有许多不同的咒语。</p>
|
||||
|
||||
<p>给你一个数组 <code>power</code> ,其中每个元素表示一个咒语的伤害值,可能会有多个咒语有相同的伤害值。</p>
|
||||
|
||||
<p>已知魔法师使用伤害值为 <code>power[i]</code> 的咒语时,他们就 <strong>不能</strong> 使用伤害为 <code>power[i] - 2</code> ,<code>power[i] - 1</code> ,<code>power[i] + 1</code> 或者 <code>power[i] + 2</code> 的咒语。</p>
|
||||
|
||||
<p>每个咒语最多只能被使用 <strong>一次</strong> 。</p>
|
||||
|
||||
<p>请你返回这个魔法师可以达到的伤害值之和的 <strong>最大值</strong> 。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>power = [1,1,3,4]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>6</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>可以使用咒语 0,1,3,伤害值分别为 1,1,4,总伤害值为 6 。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>power = [7,1,6,6]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>13</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>可以使用咒语 1,2,3,伤害值分别为 1,6,6,总伤害值为 13 。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= power.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= power[i] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,74 @@
|
||||
<p>给你一个长度为 <code>n</code> 的整数数组 <code>nums</code>。</p>
|
||||
|
||||
<p>子数组 <code>nums[l..r]</code>(其中 <code>0 <= l <= r < n</code>)的 <strong>成本 </strong>定义为:</p>
|
||||
|
||||
<p><code>cost(l, r) = nums[l] - nums[l + 1] + ... + nums[r] * (−1)<sup>r − l</sup></code></p>
|
||||
|
||||
<p>你的任务是将 <code>nums</code> 分割成若干子数组,使得所有子数组的成本之和 <strong>最大化</strong>,并确保每个元素 <strong>正好 </strong>属于一个子数组。</p>
|
||||
|
||||
<p>具体来说,如果 <code>nums</code> 被分割成 <code>k</code> 个子数组,且分割点为索引 <code>i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>k − 1</sub></code>(其中 <code>0 <= i<sub>1</sub> < i<sub>2</sub> < ... < i<sub>k - 1</sub> < n - 1</code>),则总成本为:</p>
|
||||
|
||||
<p><code>cost(0, i<sub>1</sub>) + cost(i<sub>1</sub> + 1, i<sub>2</sub>) + ... + cost(i<sub>k − 1</sub> + 1, n − 1)</code></p>
|
||||
|
||||
<p>返回在最优分割方式下的子数组成本之和的最大值。</p>
|
||||
|
||||
<p><strong>注意:</strong>如果 <code>nums</code> 没有被分割,即 <code>k = 1</code>,则总成本即为 <code>cost(0, n - 1)</code>。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">nums = [1,-2,3,4]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">10</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>一种总成本最大化的方法是将 <code>[1, -2, 3, 4]</code> 分割成子数组 <code>[1, -2, 3]</code> 和 <code>[4]</code>。总成本为 <code>(1 + 2 + 3) + 4 = 10</code>。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">nums = [1,-1,1,-1]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>一种总成本最大化的方法是将 <code>[1, -1, 1, -1]</code> 分割成子数组 <code>[1, -1]</code> 和 <code>[1, -1]</code>。总成本为 <code>(1 + 1) + (1 + 1) = 4</code>。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">nums = [0]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> 0</p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>无法进一步分割数组,因此答案为 0。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 4:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">nums = [1,-1]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>选择整个数组,总成本为 <code>1 + 1 = 2</code>,这是可能的最大成本。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,147 @@
|
||||
<p>你有一个初始为空的浮点数数组 <code>averages</code>。另给你一个包含 <code>n</code> 个整数的数组 <code>nums</code>,其中 <code>n</code> 为偶数。</p>
|
||||
|
||||
<p>你需要重复以下步骤 <code>n / 2</code> 次:</p>
|
||||
|
||||
<ul>
|
||||
<li>从 <code>nums</code> 中移除<strong> 最小 </strong>的元素 <code>minElement</code> 和<strong> 最大 </strong>的元素 <code>maxElement</code>。</li>
|
||||
<li>将 <code>(minElement + maxElement) / 2</code> 加入到 <code>averages</code> 中。</li>
|
||||
</ul>
|
||||
|
||||
<p>返回 <code>averages</code> 中的 <strong>最小 </strong>元素。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">nums = [7,8,3,4,15,13,4,1]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">5.5</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>步骤</th>
|
||||
<th>nums</th>
|
||||
<th>averages</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td>[7,8,3,4,15,13,4,1]</td>
|
||||
<td>[]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td>[7,8,3,4,13,4]</td>
|
||||
<td>[8]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td>[7,8,4,4]</td>
|
||||
<td>[8,8]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[7,4]</td>
|
||||
<td>[8,8,6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>4</td>
|
||||
<td>[]</td>
|
||||
<td>[8,8,6,5.5]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
返回 averages 中最小的元素,即 5.5。</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">nums = [1,9,8,3,10,5]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">5.5</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>步骤</th>
|
||||
<th>nums</th>
|
||||
<th>averages</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td>[1,9,8,3,10,5]</td>
|
||||
<td>[]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td>[9,8,3,5]</td>
|
||||
<td>[5.5]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td>[8,5]</td>
|
||||
<td>[5.5,6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[]</td>
|
||||
<td>[5.5,6,6.5]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">nums = [1,2,3,7,8,9]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">5.0</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>步骤</th>
|
||||
<th>nums</th>
|
||||
<th>averages</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td>[1,2,3,7,8,9]</td>
|
||||
<td>[]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td>[2,3,7,8]</td>
|
||||
<td>[5]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td>[3,7]</td>
|
||||
<td>[5,5]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[]</td>
|
||||
<td>[5,5,5]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= n == nums.length <= 50</code></li>
|
||||
<li><code>n</code> 为偶数。</li>
|
||||
<li><code>1 <= nums[i] <= 50</code></li>
|
||||
</ul>
|
@ -0,0 +1,40 @@
|
||||
<p>给你一个整数数组 <code>hours</code>,表示以 <strong>小时 </strong>为单位的时间,返回一个整数,表示满足 <code>i < j</code> 且 <code>hours[i] + hours[j]</code> 构成 <strong>整天 </strong>的下标对 <code>i</code>, <code>j</code> 的数目。</p>
|
||||
|
||||
<p><strong>整天 </strong>定义为时间持续时间是 24 小时的 <strong>整数倍 </strong>。</p>
|
||||
|
||||
<p>例如,1 天是 24 小时,2 天是 48 小时,3 天是 72 小时,以此类推。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">hours = [12,12,30,24,24]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>构成整天的下标对分别是 <code>(0, 1)</code> 和 <code>(3, 4)</code>。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">hours = [72,48,24,3]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>构成整天的下标对分别是 <code>(0, 1)</code>、<code>(0, 2)</code> 和 <code>(1, 2)</code>。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= hours.length <= 100</code></li>
|
||||
<li><code>1 <= hours[i] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,40 @@
|
||||
<p>给你一个整数数组 <code>hours</code>,表示以 <strong>小时 </strong>为单位的时间,返回一个整数,表示满足 <code>i < j</code> 且 <code>hours[i] + hours[j]</code> 构成 <strong>整天 </strong>的下标对 <code>i</code>, <code>j</code> 的数目。</p>
|
||||
|
||||
<p><strong>整天 </strong>定义为时间持续时间是 24 小时的 <strong>整数倍 </strong>。</p>
|
||||
|
||||
<p>例如,1 天是 24 小时,2 天是 48 小时,3 天是 72 小时,以此类推。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">hours = [12,12,30,24,24]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>构成整天的下标对分别是 <code>(0, 1)</code> 和 <code>(3, 4)</code>。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>输入:</strong> <span class="example-io">hours = [72,48,24,3]</span></p>
|
||||
|
||||
<p><strong>输出:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>构成整天的下标对分别是 <code>(0, 1)</code>、<code>(0, 2)</code> 和 <code>(1, 2)</code>。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= hours.length <= 5 * 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= hours[i] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,39 @@
|
||||
<p>给你一个整数数组 <code>nums</code> 和一个 <strong>非负</strong> 整数 <code>k</code> 。如果一个整数序列 <code>seq</code> 满足在范围下标范围 <code>[0, seq.length - 2]</code> 中存在 <strong>不超过</strong> <code>k</code> 个下标 <code>i</code> 满足 <code>seq[i] != seq[i + 1]</code> ,那么我们称这个整数序列为 <strong>好</strong> 序列。</p>
|
||||
|
||||
<p>请你返回 <code>nums</code> 中 <strong>好</strong> <span data-keyword="subsequence-array">子序列</span> 的最长长度</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1,2,1,1,3], k = 2</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>4</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>最长好子序列为 <code>[<em><strong>1</strong></em>,<em><strong>2</strong></em>,<strong><em>1</em></strong>,<em><strong>1</strong></em>,3]</code> 。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1,2,3,4,5,1], k = 0</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>2</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>最长好子序列为 <code>[<strong><em>1</em></strong>,2,3,4,5,<strong><em>1</em></strong>]</code> 。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 500</code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
<li><code>0 <= k <= min(nums.length, 25)</code></li>
|
||||
</ul>
|
@ -0,0 +1,39 @@
|
||||
<p>给你一个整数数组 <code>nums</code> 和一个 <strong>非负</strong> 整数 <code>k</code> 。如果一个整数序列 <code>seq</code> 满足在范围下标范围 <code>[0, seq.length - 2]</code> 中存在 <strong>不超过</strong> <code>k</code> 个下标 <code>i</code> 满足 <code>seq[i] != seq[i + 1]</code> ,那么我们称这个整数序列为 <strong>好</strong> 序列。</p>
|
||||
|
||||
<p>请你返回 <code>nums</code> 中 <strong>好</strong> <span data-keyword="subsequence-array">子序列</span> 的最长长度</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1,2,1,1,3], k = 2</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>4</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>最长好子序列为 <code>[<em><strong>1</strong></em>,<em><strong>2</strong></em>,<strong><em>1</em></strong>,<em><strong>1</strong></em>,3]</code> 。</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>nums = [1,2,3,4,5,1], k = 0</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>2</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>最长好子序列为 <code>[<strong><em>1</em></strong>,2,3,4,5,<strong><em>1</em></strong>]</code> 。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 5 * 10<sup>3</sup></code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
<li><code>0 <= k <= min(50, nums.length)</code></li>
|
||||
</ul>
|
47
leetcode-cn/problem (Chinese)/清除数字 [clear-digits].html
Normal file
47
leetcode-cn/problem (Chinese)/清除数字 [clear-digits].html
Normal file
@ -0,0 +1,47 @@
|
||||
<p>给你一个字符串 <code>s</code> 。</p>
|
||||
|
||||
<p>你的任务是重复以下操作删除 <strong>所有</strong> 数字字符:</p>
|
||||
|
||||
<ul>
|
||||
<li>删除 <strong>第一个数字字符</strong> 以及它左边 <strong>最近</strong> 的 <strong>非数字</strong> 字符。</li>
|
||||
</ul>
|
||||
|
||||
<p>请你返回删除所有数字字符以后剩下的字符串。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>s = "abc"</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>"abc"</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>字符串中没有数字。<!-- notionvc: ff07e34f-b1d6-41fb-9f83-5d0ba3c1ecde --></p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>s = "cb34"</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>""</span></p>
|
||||
|
||||
<p><b>解释:</b></p>
|
||||
|
||||
<p>一开始,我们对 <code>s[2]</code> 执行操作,<code>s</code> 变为 <code>"c4"</code> 。</p>
|
||||
|
||||
<p>然后对 <code>s[1]</code> 执行操作,<code>s</code> 变为 <code>""</code> 。</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= s.length <= 100</code></li>
|
||||
<li><code>s</code> 只包含小写英文字母和数字字符。</li>
|
||||
<li>输入保证所有数字都可以按以上操作被删除。</li>
|
||||
</ul>
|
@ -0,0 +1,94 @@
|
||||
<p>给你一个整数 <code>n</code> 和一个二维数组 <code>requirements</code> ,其中 <code>requirements[i] = [end<sub>i</sub>, cnt<sub>i</sub>]</code> <span class="text-only" data-eleid="10" style="white-space: pre;">表示这个要求中的末尾下标和 <strong>逆序对</strong> 的数目。</span></p>
|
||||
|
||||
<p>整数数组 <code>nums</code> 中一个下标对 <code>(i, j)</code> 如果满足以下条件,那么它们被称为一个 <strong>逆序对</strong> :</p>
|
||||
|
||||
<ul>
|
||||
<li><code>i < j</code> 且 <code>nums[i] > nums[j]</code></li>
|
||||
</ul>
|
||||
|
||||
<p>请你返回 <code>[0, 1, 2, ..., n - 1]</code> 的 <span data-keyword="permutation">排列</span> <code>perm</code> 的数目,满足对 <strong>所有</strong> 的 <code>requirements[i]</code> 都有 <code>perm[0..end<sub>i</sub>]</code> 恰好有 <code>cnt<sub>i</sub></code> 个逆序对。</p>
|
||||
|
||||
<p>由于答案可能会很大,将它对 <code>10<sup>9</sup> + 7</code> <strong>取余</strong> 后返回。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong class="example">示例 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>n = 3, requirements = [[2,2],[0,0]]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>2</span></p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>两个排列为:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>[2, 0, 1]</code>
|
||||
|
||||
<ul>
|
||||
<li>前缀 <code>[2, 0, 1]</code> 的逆序对为 <code>(0, 1)</code> 和 <code>(0, 2)</code> 。</li>
|
||||
<li>前缀 <code>[2]</code> 的逆序对数目为 0 个。</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><code>[1, 2, 0]</code>
|
||||
<ul>
|
||||
<li>前缀 <code>[1, 2, 0]</code> 的逆序对为 <code>(0, 2)</code> 和 <code>(1, 2)</code> 。</li>
|
||||
<li>前缀 <code>[1]</code> 的逆序对数目为 0 个。</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>n = 3, requirements = [[2,2],[1,1],[0,0]]</span></p>
|
||||
|
||||
<p><b>输出:</b>1</p>
|
||||
|
||||
<p><strong>解释:</strong></p>
|
||||
|
||||
<p>唯一满足要求的排列是 <code>[2, 0, 1]</code> :</p>
|
||||
|
||||
<ul>
|
||||
<li>前缀 <code>[2, 0, 1]</code> 的逆序对为 <code>(0, 1)</code> 和 <code>(0, 2)</code> 。</li>
|
||||
<li>前缀 <code>[2, 0]</code> 的逆序对为 <code>(0, 1)</code> 。</li>
|
||||
<li>前缀 <code>[2]</code> 的逆序对数目为 0 。</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">示例 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><span class="example-io"><b>输入:</b>n = 2, requirements = [[0,0],[1,0]]</span></p>
|
||||
|
||||
<p><span class="example-io"><b>输出:</b>1</span></p>
|
||||
|
||||
<p><b>解释:</b></p>
|
||||
|
||||
<p>唯一满足要求的排列为 <code>[0, 1]</code> :</p>
|
||||
|
||||
<ul>
|
||||
<li>前缀 <code>[0]</code> 的逆序对数目为 0 。</li>
|
||||
<li>前缀 <code>[0, 1]</code> 的逆序对为 <code>(0, 1)</code> 。</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<div id="gtx-trans" style="position: absolute; left: 198px; top: 756px;">
|
||||
<div class="gtx-trans-icon"> </div>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= n <= 300</code></li>
|
||||
<li><code>1 <= requirements.length <= n</code></li>
|
||||
<li><code>requirements[i] = [end<sub>i</sub>, cnt<sub>i</sub>]</code></li>
|
||||
<li><code>0 <= end<sub>i</sub> <= n - 1</code></li>
|
||||
<li><code>0 <= cnt<sub>i</sub> <= 400</code></li>
|
||||
<li>输入保证至少有一个 <code>i</code> 满足 <code>end<sub>i</sub> == n - 1</code> 。</li>
|
||||
<li>输入保证所有的 <code>end<sub>i</sub></code> 互不相同。</li>
|
||||
</ul>
|
@ -0,0 +1,93 @@
|
||||
<p>You are given two integers <code>n</code> and <code>k</code>.</p>
|
||||
|
||||
<p>Initially, you start with an array <code>a</code> of <code>n</code> integers where <code>a[i] = 1</code> for all <code>0 <= i <= n - 1</code>. After each second, you simultaneously update each element to be the sum of all its preceding elements plus the element itself. For example, after one second, <code>a[0]</code> remains the same, <code>a[1]</code> becomes <code>a[0] + a[1]</code>, <code>a[2]</code> becomes <code>a[0] + a[1] + a[2]</code>, and so on.</p>
|
||||
|
||||
<p>Return the <strong>value</strong> of <code>a[n - 1]</code> after <code>k</code> seconds.</p>
|
||||
|
||||
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 4, k = 5</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">56</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table border="1">
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Second</th>
|
||||
<th>State After</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td>[1,1,1,1]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td>[1,2,3,4]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td>[1,3,6,10]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[1,4,10,20]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>4</td>
|
||||
<td>[1,5,15,35]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>5</td>
|
||||
<td>[1,6,21,56]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 5, k = 3</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">35</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table border="1">
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Second</th>
|
||||
<th>State After</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td>[1,1,1,1,1]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td>[1,2,3,4,5]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td>[1,3,6,10,15]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[1,4,10,20,35]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= n, k <= 1000</code></li>
|
||||
</ul>
|
@ -0,0 +1,48 @@
|
||||
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p>
|
||||
|
||||
<p>You can do the following operation on the array <strong>any</strong> number of times (possibly zero):</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose <strong>any</strong> 3 <strong>consecutive</strong> elements from the array and <strong>flip</strong> <strong>all</strong> of them.</li>
|
||||
</ul>
|
||||
|
||||
<p><strong>Flipping</strong> an element means changing its value from 0 to 1, and from 1 to 0.</p>
|
||||
|
||||
<p>Return the <strong>minimum</strong> number of operations required to make all elements in <code>nums</code> equal to 1. If it is impossible, return -1.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1,0,0]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong><br />
|
||||
We can do the following operations:</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose the elements at indices 0, 1 and 2. The resulting array is <code>nums = [<u><strong>1</strong></u>,<u><strong>0</strong></u>,<u><strong>0</strong></u>,1,0,0]</code>.</li>
|
||||
<li>Choose the elements at indices 1, 2 and 3. The resulting array is <code>nums = [1,<u><strong>1</strong></u>,<u><strong>1</strong></u>,<strong><u>0</u></strong>,0,0]</code>.</li>
|
||||
<li>Choose the elements at indices 3, 4 and 5. The resulting array is <code>nums = [1,1,1,<strong><u>1</u></strong>,<u><strong>1</strong></u>,<u><strong>1</strong></u>]</code>.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong><br />
|
||||
It is impossible to make all elements equal to 1.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>3 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>0 <= nums[i] <= 1</code></li>
|
||||
</ul>
|
@ -0,0 +1,53 @@
|
||||
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p>
|
||||
|
||||
<p>You can do the following operation on the array <strong>any</strong> number of times (possibly zero):</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose <strong>any</strong> index <code>i</code> from the array and <strong>flip</strong> <strong>all</strong> the elements from index <code>i</code> to the end of the array.</li>
|
||||
</ul>
|
||||
|
||||
<p><strong>Flipping</strong> an element means changing its value from 0 to 1, and from 1 to 0.</p>
|
||||
|
||||
<p>Return the <strong>minimum</strong> number of operations required to make all elements in <code>nums</code> equal to 1.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,0,1]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong><br />
|
||||
We can do the following operations:</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose the index <code>i = 1</code><span class="example-io">. The resulting array will be <code>nums = [0,<u><strong>0</strong></u>,<u><strong>0</strong></u>,<u><strong>1</strong></u>,<u><strong>0</strong></u>]</code>.</span></li>
|
||||
<li>Choose the index <code>i = 0</code><span class="example-io">. The resulting array will be <code>nums = [<u><strong>1</strong></u>,<u><strong>1</strong></u>,<u><strong>1</strong></u>,<u><strong>0</strong></u>,<u><strong>1</strong></u>]</code>.</span></li>
|
||||
<li>Choose the index <code>i = 4</code><span class="example-io">. The resulting array will be <code>nums = [1,1,1,0,<u><strong>0</strong></u>]</code>.</span></li>
|
||||
<li>Choose the index <code>i = 3</code><span class="example-io">. The resulting array will be <code>nums = [1,1,1,<u><strong>1</strong></u>,<u><strong>1</strong></u>]</code>.</span></li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,0,0,0]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">1</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong><br />
|
||||
We can do the following operation:</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose the index <code>i = 1</code><span class="example-io">. The resulting array will be <code>nums = [1,<u><strong>1</strong></u>,<u><strong>1</strong></u>,<u><strong>1</strong></u>]</code>.</span></li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>0 <= nums[i] <= 1</code></li>
|
||||
</ul>
|
@ -0,0 +1,38 @@
|
||||
<p>You are given an integer array <code>nums</code>. In one operation, you can add or subtract 1 from <strong>any</strong> element of <code>nums</code>.</p>
|
||||
|
||||
<p>Return the <strong>minimum</strong> number of operations to make all elements of <code>nums</code> divisible by 3.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>All array elements can be made divisible by 3 using 3 operations:</p>
|
||||
|
||||
<ul>
|
||||
<li>Subtract 1 from 1.</li>
|
||||
<li>Add 1 to 2.</li>
|
||||
<li>Subtract 1 from 4.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [3,6,9]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">0</span></p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 50</code></li>
|
||||
<li><code>1 <= nums[i] <= 50</code></li>
|
||||
</ul>
|
@ -0,0 +1,41 @@
|
||||
<p>You are given a 2D <strong>binary</strong> array <code>grid</code>. Find a rectangle with horizontal and vertical sides with the<strong> smallest</strong> area, such that all the 1's in <code>grid</code> lie inside this rectangle.</p>
|
||||
|
||||
<p>Return the <strong>minimum</strong> possible area of the rectangle.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">grid = [[0,1,0],[1,0,1]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">6</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/05/08/examplerect0.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 279px; height: 198px;" /></p>
|
||||
|
||||
<p>The smallest rectangle has a height of 2 and a width of 3, so it has an area of <code>2 * 3 = 6</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">grid = [[1,0],[0,0]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">1</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/05/08/examplerect1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 204px; height: 201px;" /></p>
|
||||
|
||||
<p>The smallest rectangle has both height and width 1, so its area is <code>1 * 1 = 1</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= grid.length, grid[i].length <= 1000</code></li>
|
||||
<li><code>grid[i][j]</code> is either 0 or 1.</li>
|
||||
<li>The input is generated such that there is at least one 1 in <code>grid</code>.</li>
|
||||
</ul>
|
@ -0,0 +1,51 @@
|
||||
<p>You are given a 2D <strong>binary</strong> array <code>grid</code>. You need to find 3 <strong>non-overlapping</strong> rectangles having <strong>non-zero</strong> areas with horizontal and vertical sides such that all the 1's in <code>grid</code> lie inside these rectangles.</p>
|
||||
|
||||
<p>Return the <strong>minimum</strong> possible sum of the area of these rectangles.</p>
|
||||
|
||||
<p><strong>Note</strong> that the rectangles are allowed to touch.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">grid = [[1,0,1],[1,1,1]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">5</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/05/14/example0rect21.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 280px; height: 198px;" /></p>
|
||||
|
||||
<ul>
|
||||
<li>The 1's at <code>(0, 0)</code> and <code>(1, 0)</code> are covered by a rectangle of area 2.</li>
|
||||
<li>The 1's at <code>(0, 2)</code> and <code>(1, 2)</code> are covered by a rectangle of area 2.</li>
|
||||
<li>The 1 at <code>(1, 1)</code> is covered by a rectangle of area 1.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">grid = [[1,0,1,0],[0,1,0,1]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">5</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/05/14/example1rect2.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 356px; height: 198px;" /></p>
|
||||
|
||||
<ul>
|
||||
<li>The 1's at <code>(0, 0)</code> and <code>(0, 2)</code> are covered by a rectangle of area 3.</li>
|
||||
<li>The 1 at <code>(1, 1)</code> is covered by a rectangle of area 1.</li>
|
||||
<li>The 1 at <code>(1, 3)</code> is covered by a rectangle of area 1.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= grid.length, grid[i].length <= 30</code></li>
|
||||
<li><code>grid[i][j]</code> is either 0 or 1.</li>
|
||||
<li>The input is generated such that there are at least three 1's in <code>grid</code>.</li>
|
||||
</ul>
|
@ -0,0 +1,43 @@
|
||||
<p>You are given an integer array <code>rewardValues</code> of length <code>n</code>, representing the values of rewards.</p>
|
||||
|
||||
<p>Initially, your total reward <code>x</code> is 0, and all indices are <strong>unmarked</strong>. You are allowed to perform the following operation <strong>any</strong> number of times:</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose an <strong>unmarked</strong> index <code>i</code> from the range <code>[0, n - 1]</code>.</li>
|
||||
<li>If <code>rewardValues[i]</code> is <strong>greater</strong> than your current total reward <code>x</code>, then add <code>rewardValues[i]</code> to <code>x</code> (i.e., <code>x = x + rewardValues[i]</code>), and <strong>mark</strong> the index <code>i</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return an integer denoting the <strong>maximum </strong><em>total reward</em> you can collect by performing the operations optimally.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">rewardValues = [1,1,3,3]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>During the operations, we can choose to mark the indices 0 and 2 in order, and the total reward will be 4, which is the maximum.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">rewardValues = [1,6,4,3,2]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">11</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>Mark the indices 0, 2, and 1 in order. The total reward will then be 11, which is the maximum.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= rewardValues.length <= 2000</code></li>
|
||||
<li><code>1 <= rewardValues[i] <= 2000</code></li>
|
||||
</ul>
|
@ -0,0 +1,43 @@
|
||||
<p>You are given an integer array <code>rewardValues</code> of length <code>n</code>, representing the values of rewards.</p>
|
||||
|
||||
<p>Initially, your total reward <code>x</code> is 0, and all indices are <strong>unmarked</strong>. You are allowed to perform the following operation <strong>any</strong> number of times:</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose an <strong>unmarked</strong> index <code>i</code> from the range <code>[0, n - 1]</code>.</li>
|
||||
<li>If <code>rewardValues[i]</code> is <strong>greater</strong> than your current total reward <code>x</code>, then add <code>rewardValues[i]</code> to <code>x</code> (i.e., <code>x = x + rewardValues[i]</code>), and <strong>mark</strong> the index <code>i</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return an integer denoting the <strong>maximum </strong><em>total reward</em> you can collect by performing the operations optimally.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">rewardValues = [1,1,3,3]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>During the operations, we can choose to mark the indices 0 and 2 in order, and the total reward will be 4, which is the maximum.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">rewardValues = [1,6,4,3,2]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">11</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>Mark the indices 0, 2, and 1 in order. The total reward will then be 11, which is the maximum.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= rewardValues.length <= 5 * 10<sup>4</sup></code></li>
|
||||
<li><code>1 <= rewardValues[i] <= 5 * 10<sup>4</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,135 @@
|
||||
<p>You are given two <strong>positive</strong> integers <code>n</code> and <code>k</code>. There are <code>n</code> children numbered from <code>0</code> to <code>n - 1</code> standing in a queue <em>in order</em> from left to right.</p>
|
||||
|
||||
<p>Initially, child 0 holds a ball and the direction of passing the ball is towards the right direction. After each second, the child holding the ball passes it to the child next to them. Once the ball reaches <strong>either</strong> end of the line, i.e. child 0 or child <code>n - 1</code>, the direction of passing is <strong>reversed</strong>.</p>
|
||||
|
||||
<p>Return the number of the child who receives the ball after <code>k</code> seconds.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 3, k = 5</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">1</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Time elapsed</th>
|
||||
<th>Children</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>0</code></td>
|
||||
<td><code>[<u>0</u>, 1, 2]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>1</code></td>
|
||||
<td><code>[0, <u>1</u>, 2]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>2</code></td>
|
||||
<td><code>[0, 1, <u>2</u>]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>3</code></td>
|
||||
<td><code>[0, <u>1</u>, 2]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>4</code></td>
|
||||
<td><code>[<u>0</u>, 1, 2]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>5</code></td>
|
||||
<td><code>[0, <u>1</u>, 2]</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 5, k = 6</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Time elapsed</th>
|
||||
<th>Children</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>0</code></td>
|
||||
<td><code>[<u>0</u>, 1, 2, 3, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>1</code></td>
|
||||
<td><code>[0, <u>1</u>, 2, 3, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>2</code></td>
|
||||
<td><code>[0, 1, <u>2</u>, 3, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>3</code></td>
|
||||
<td><code>[0, 1, 2, <u>3</u>, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>4</code></td>
|
||||
<td><code>[0, 1, 2, 3, <u>4</u>]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>5</code></td>
|
||||
<td><code>[0, 1, 2, <u>3</u>, 4]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>6</code></td>
|
||||
<td><code>[0, 1, <u>2</u>, 3, 4]</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 4, k = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Time elapsed</th>
|
||||
<th>Children</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>0</code></td>
|
||||
<td><code>[<u>0</u>, 1, 2, 3]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>1</code></td>
|
||||
<td><code>[0, <u>1</u>, 2, 3]</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>2</code></td>
|
||||
<td><code>[0, 1, <u>2</u>, 3]</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= n <= 50</code></li>
|
||||
<li><code>1 <= k <= 50</code></li>
|
||||
</ul>
|
@ -0,0 +1,51 @@
|
||||
<p>You are given an array <code>nums</code> and an integer <code>k</code>. You need to find a <span data-keyword="subarray-nonempty">subarray</span> of <code>nums</code> such that the <strong>absolute difference</strong> between <code>k</code> and the bitwise <code>OR</code> of the subarray elements is as<strong> small</strong> as possible. In other words, select a subarray <code>nums[l..r]</code> such that <code>|k - (nums[l] OR nums[l + 1] ... OR nums[r])|</code> is minimum.</p>
|
||||
|
||||
<p>Return the <strong>minimum</strong> possible value of the absolute difference.</p>
|
||||
|
||||
<p>A <strong>subarray</strong> is a contiguous <b>non-empty</b> sequence of elements within an array.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,4,5], k = 3</span></p>
|
||||
|
||||
<p><strong>Output:</strong> 0</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The subarray <code>nums[0..1]</code> has <code>OR</code> value 3, which gives the minimum absolute difference <code>|3 - 3| = 0</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,3,1,3], k = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> 1</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The subarray <code>nums[1..1]</code> has <code>OR</code> value 3, which gives the minimum absolute difference <code>|3 - 2| = 1</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1], k = 10</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">9</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>There is a single subarray with <code>OR</code> value 1, which gives the minimum absolute difference <code>|10 - 1| = 9</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
<li><code>1 <= k <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,68 @@
|
||||
<p>A competition consists of <code>n</code> players numbered from <code>0</code> to <code>n - 1</code>.</p>
|
||||
|
||||
<p>You are given an integer array <code>skills</code> of size <code>n</code> and a <strong>positive</strong> integer <code>k</code>, where <code>skills[i]</code> is the skill level of player <code>i</code>. All integers in <code>skills</code> are <strong>unique</strong>.</p>
|
||||
|
||||
<p>All players are standing in a queue in order from player <code>0</code> to player <code>n - 1</code>.</p>
|
||||
|
||||
<p>The competition process is as follows:</p>
|
||||
|
||||
<ul>
|
||||
<li>The first two players in the queue play a game, and the player with the <strong>higher</strong> skill level wins.</li>
|
||||
<li>After the game, the winner stays at the beginning of the queue, and the loser goes to the end of it.</li>
|
||||
</ul>
|
||||
|
||||
<p>The winner of the competition is the <strong>first</strong> player who wins <code>k</code> games <strong>in a row</strong>.</p>
|
||||
|
||||
<p>Return the initial index of the <em>winning</em> player.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">skills = [4,2,6,3,9], k = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> 2</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>Initially, the queue of players is <code>[0,1,2,3,4]</code>. The following process happens:</p>
|
||||
|
||||
<ul>
|
||||
<li>Players 0 and 1 play a game, since the skill of player 0 is higher than that of player 1, player 0 wins. The resulting queue is <code>[0,2,3,4,1]</code>.</li>
|
||||
<li>Players 0 and 2 play a game, since the skill of player 2 is higher than that of player 0, player 2 wins. The resulting queue is <code>[2,3,4,1,0]</code>.</li>
|
||||
<li>Players 2 and 3 play a game, since the skill of player 2 is higher than that of player 3, player 2 wins. The resulting queue is <code>[2,4,1,0,3]</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Player 2 won <code>k = 2</code> games in a row, so the winner is player 2.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">skills = [2,5,4], k = 3</span></p>
|
||||
|
||||
<p><strong>Output:</strong> 1</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>Initially, the queue of players is <code>[0,1,2]</code>. The following process happens:</p>
|
||||
|
||||
<ul>
|
||||
<li>Players 0 and 1 play a game, since the skill of player 1 is higher than that of player 0, player 1 wins. The resulting queue is <code>[1,2,0]</code>.</li>
|
||||
<li>Players 1 and 2 play a game, since the skill of player 1 is higher than that of player 2, player 1 wins. The resulting queue is <code>[1,0,2]</code>.</li>
|
||||
<li>Players 1 and 0 play a game, since the skill of player 1 is higher than that of player 0, player 1 wins. The resulting queue is <code>[1,2,0]</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Player 1 won <code>k = 3</code> games in a row, so the winner is player 1.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>n == skills.length</code></li>
|
||||
<li><code>2 <= n <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= k <= 10<sup>9</sup></code></li>
|
||||
<li><code>1 <= skills[i] <= 10<sup>6</sup></code></li>
|
||||
<li>All integers in <code>skills</code> are unique.</li>
|
||||
</ul>
|
@ -0,0 +1,65 @@
|
||||
<p>A <strong>peak</strong> in an array <code>arr</code> is an element that is <strong>greater</strong> than its previous and next element in <code>arr</code>.</p>
|
||||
|
||||
<p>You are given an integer array <code>nums</code> and a 2D integer array <code>queries</code>.</p>
|
||||
|
||||
<p>You have to process queries of two types:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>queries[i] = [1, l<sub>i</sub>, r<sub>i</sub>]</code>, determine the count of <strong>peak</strong> elements in the <span data-keyword="subarray">subarray</span> <code>nums[l<sub>i</sub>..r<sub>i</sub>]</code>.<!-- notionvc: 73b20b7c-e1ab-4dac-86d0-13761094a9ae --></li>
|
||||
<li><code>queries[i] = [2, index<sub>i</sub>, val<sub>i</sub>]</code>, change <code>nums[index<sub>i</sub>]</code> to <code><font face="monospace">val<sub>i</sub></font></code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return an array <code>answer</code> containing the results of the queries of the first type in order.<!-- notionvc: a9ccef22-4061-4b5a-b4cc-a2b2a0e12f30 --></p>
|
||||
|
||||
<p><strong>Notes:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li>The <strong>first</strong> and the <strong>last</strong> element of an array or a subarray<!-- notionvc: fcffef72-deb5-47cb-8719-3a3790102f73 --> <strong>cannot</strong> be a peak.</li>
|
||||
</ul>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [3,1,4,2,5], queries = [[2,3,4],[1,0,4]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[0]</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>First query: We change <code>nums[3]</code> to 4 and <code>nums</code> becomes <code>[3,1,4,4,5]</code>.</p>
|
||||
|
||||
<p>Second query: The number of peaks in the <code>[3,1,4,4,5]</code> is 0.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [4,1,4,2,1,5], queries = [[2,2,4],[1,0,2],[1,0,4]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[0,1]</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>First query: <code>nums[2]</code> should become 4, but it is already set to 4.</p>
|
||||
|
||||
<p>Second query: The number of peaks in the <code>[4,1,4]</code> is 0.</p>
|
||||
|
||||
<p>Third query: The second 4 is a peak in the <code>[4,1,4,2,1]</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>3 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= queries.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>queries[i][0] == 1</code> or <code>queries[i][0] == 2</code></li>
|
||||
<li>For all <code>i</code> that:
|
||||
<ul>
|
||||
<li><code>queries[i][0] == 1</code>: <code>0 <= queries[i][1] <= queries[i][2] <= nums.length - 1</code></li>
|
||||
<li><code>queries[i][0] == 2</code>: <code>0 <= queries[i][1] <= nums.length - 1</code>, <code>1 <= queries[i][2] <= 10<sup>5</sup></code></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
@ -0,0 +1,42 @@
|
||||
<p>A magician has various spells.</p>
|
||||
|
||||
<p>You are given an array <code>power</code>, where each element represents the damage of a spell. Multiple spells can have the same damage value.</p>
|
||||
|
||||
<p>It is a known fact that if a magician decides to cast a spell with a damage of <code>power[i]</code>, they <strong>cannot</strong> cast any spell with a damage of <code>power[i] - 2</code>, <code>power[i] - 1</code>, <code>power[i] + 1</code>, or <code>power[i] + 2</code>.</p>
|
||||
|
||||
<p>Each spell can be cast <strong>only once</strong>.</p>
|
||||
|
||||
<p>Return the <strong>maximum</strong> possible <em>total damage</em> that a magician can cast.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">power = [1,1,3,4]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">6</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The maximum possible damage of 6 is produced by casting spells 0, 1, 3 with damage 1, 1, 4.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">power = [7,1,6,6]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">13</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The maximum possible damage of 13 is produced by casting spells 1, 2, 3 with damage 1, 6, 6.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= power.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= power[i] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,72 @@
|
||||
<p>You are given an integer array <code>nums</code> with length <code>n</code>.</p>
|
||||
|
||||
<p>The <strong>cost</strong> of a <span data-keyword="subarray-nonempty">subarray</span> <code>nums[l..r]</code>, where <code>0 <= l <= r < n</code>, is defined as:</p>
|
||||
|
||||
<p><code>cost(l, r) = nums[l] - nums[l + 1] + ... + nums[r] * (−1)<sup>r − l</sup></code></p>
|
||||
|
||||
<p>Your task is to <strong>split</strong> <code>nums</code> into subarrays such that the <strong>total</strong> <strong>cost</strong> of the subarrays is <strong>maximized</strong>, ensuring each element belongs to <strong>exactly one</strong> subarray.</p>
|
||||
|
||||
<p>Formally, if <code>nums</code> is split into <code>k</code> subarrays, where <code>k > 1</code>, at indices <code>i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>k − 1</sub></code>, where <code>0 <= i<sub>1</sub> < i<sub>2</sub> < ... < i<sub>k - 1</sub> < n - 1</code>, then the total cost will be:</p>
|
||||
|
||||
<p><code>cost(0, i<sub>1</sub>) + cost(i<sub>1</sub> + 1, i<sub>2</sub>) + ... + cost(i<sub>k − 1</sub> + 1, n − 1)</code></p>
|
||||
|
||||
<p>Return an integer denoting the <em>maximum total cost</em> of the subarrays after splitting the array optimally.</p>
|
||||
|
||||
<p><strong>Note:</strong> If <code>nums</code> is not split into subarrays, i.e. <code>k = 1</code>, the total cost is simply <code>cost(0, n - 1)</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,-2,3,4]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">10</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>One way to maximize the total cost is by splitting <code>[1, -2, 3, 4]</code> into subarrays <code>[1, -2, 3]</code> and <code>[4]</code>. The total cost will be <code>(1 + 2 + 3) + 4 = 10</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,-1,1,-1]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>One way to maximize the total cost is by splitting <code>[1, -1, 1, -1]</code> into subarrays <code>[1, -1]</code> and <code>[1, -1]</code>. The total cost will be <code>(1 + 1) + (1 + 1) = 4</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [0]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> 0</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>We cannot split the array further, so the answer is 0.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 4:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,-1]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>Selecting the whole array gives a total cost of <code>1 + 1 = 2</code>, which is the maximum.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,145 @@
|
||||
<p>You have an array of floating point numbers <code>averages</code> which is initially empty. You are given an array <code>nums</code> of <code>n</code> integers where <code>n</code> is even.</p>
|
||||
|
||||
<p>You repeat the following procedure <code>n / 2</code> times:</p>
|
||||
|
||||
<ul>
|
||||
<li>Remove the <strong>smallest</strong> element, <code>minElement</code>, and the <strong>largest</strong> element <code>maxElement</code>, from <code>nums</code>.</li>
|
||||
<li>Add <code>(minElement + maxElement) / 2</code> to <code>averages</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return the <strong>minimum</strong> element in <code>averages</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [7,8,3,4,15,13,4,1]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">5.5</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>step</th>
|
||||
<th>nums</th>
|
||||
<th>averages</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td>[7,8,3,4,15,13,4,1]</td>
|
||||
<td>[]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td>[7,8,3,4,13,4]</td>
|
||||
<td>[8]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td>[7,8,4,4]</td>
|
||||
<td>[8,8]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[7,4]</td>
|
||||
<td>[8,8,6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>4</td>
|
||||
<td>[]</td>
|
||||
<td>[8,8,6,5.5]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
The smallest element of averages, 5.5, is returned.</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,9,8,3,10,5]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">5.5</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>step</th>
|
||||
<th>nums</th>
|
||||
<th>averages</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td><span class="example-io">[1,9,8,3,10,5]</span></td>
|
||||
<td>[]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td><span class="example-io">[9,8,3,5]</span></td>
|
||||
<td>[5.5]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td><span class="example-io">[8,5]</span></td>
|
||||
<td>[5.5,6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td>[]</td>
|
||||
<td>[5.5,6,6.5]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,7,8,9]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">5.0</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>step</th>
|
||||
<th>nums</th>
|
||||
<th>averages</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>0</td>
|
||||
<td><span class="example-io">[1,2,3,7,8,9]</span></td>
|
||||
<td>[]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>1</td>
|
||||
<td><span class="example-io">[2,3,7,8]</span></td>
|
||||
<td>[5]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2</td>
|
||||
<td><span class="example-io">[3,7]</span></td>
|
||||
<td>[5,5]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>3</td>
|
||||
<td><span class="example-io">[]</span></td>
|
||||
<td>[5,5,5]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= n == nums.length <= 50</code></li>
|
||||
<li><code>n</code> is even.</li>
|
||||
<li><code>1 <= nums[i] <= 50</code></li>
|
||||
</ul>
|
@ -0,0 +1,38 @@
|
||||
<p>Given an integer array <code>hours</code> representing times in <strong>hours</strong>, return an integer denoting the number of pairs <code>i</code>, <code>j</code> where <code>i < j</code> and <code>hours[i] + hours[j]</code> forms a <strong>complete day</strong>.</p>
|
||||
|
||||
<p>A <strong>complete day</strong> is defined as a time duration that is an <strong>exact</strong> <strong>multiple</strong> of 24 hours.</p>
|
||||
|
||||
<p>For example, 1 day is 24 hours, 2 days is 48 hours, 3 days is 72 hours, and so on.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">hours = [12,12,30,24,24]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The pairs of indices that form a complete day are <code>(0, 1)</code> and <code>(3, 4)</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">hours = [72,48,24,3]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The pairs of indices that form a complete day are <code>(0, 1)</code>, <code>(0, 2)</code>, and <code>(1, 2)</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= hours.length <= 100</code></li>
|
||||
<li><code>1 <= hours[i] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,34 @@
|
||||
<p>Given an integer array <code>hours</code> representing times in <strong>hours</strong>, return an integer denoting the number of pairs <code>i</code>, <code>j</code> where <code>i < j</code> and <code>hours[i] + hours[j]</code> forms a <strong>complete day</strong>.</p>
|
||||
|
||||
<p>A <strong>complete day</strong> is defined as a time duration that is an <strong>exact</strong> <strong>multiple</strong> of 24 hours.</p>
|
||||
|
||||
<p>For example, 1 day is 24 hours, 2 days is 48 hours, 3 days is 72 hours, and so on.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">hours = [12,12,30,24,24]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong> The pairs of indices that form a complete day are <code>(0, 1)</code> and <code>(3, 4)</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">hours = [72,48,24,3]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong> The pairs of indices that form a complete day are <code>(0, 1)</code>, <code>(0, 2)</code>, and <code>(1, 2)</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= hours.length <= 5 * 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= hours[i] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@ -0,0 +1,37 @@
|
||||
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. A sequence of integers <code>seq</code> is called <strong>good</strong> if there are <strong>at most</strong> <code>k</code> indices <code>i</code> in the range <code>[0, seq.length - 2]</code> such that <code>seq[i] != seq[i + 1]</code>.</p>
|
||||
|
||||
<p>Return the <strong>maximum</strong> possible length of a <strong>good</strong> <span data-keyword="subsequence-array">subsequence</span> of <code>nums</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,1,1,3], k = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The maximum length subsequence is <code>[<u>1</u>,<u>2</u>,<u>1</u>,<u>1</u>,3]</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,1], k = 0</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The maximum length subsequence is <code>[<u>1</u>,2,3,4,5,<u>1</u>]</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 500</code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
<li><code>0 <= k <= min(nums.length, 25)</code></li>
|
||||
</ul>
|
@ -0,0 +1,37 @@
|
||||
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. A sequence of integers <code>seq</code> is called <strong>good</strong> if there are <strong>at most</strong> <code>k</code> indices <code>i</code> in the range <code>[0, seq.length - 2]</code> such that <code>seq[i] != seq[i + 1]</code>.</p>
|
||||
|
||||
<p>Return the <strong>maximum</strong> possible length of a <strong>good</strong> <span data-keyword="subsequence-array">subsequence</span> of <code>nums</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,1,1,3], k = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The maximum length subsequence is <code>[<u>1</u>,<u>2</u>,<u>1</u>,<u>1</u>,3]</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,1], k = 0</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The maximum length subsequence is <code>[<u>1</u>,2,3,4,5,<u>1</u>]</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 5 * 10<sup>3</sup></code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
<li><code>0 <= k <= min(50, nums.length)</code></li>
|
||||
</ul>
|
@ -0,0 +1,45 @@
|
||||
<p>You are given a string <code>s</code>.</p>
|
||||
|
||||
<p>Your task is to remove <strong>all</strong> digits by doing this operation repeatedly:</p>
|
||||
|
||||
<ul>
|
||||
<li>Delete the <em>first</em> digit and the <strong>closest</strong> <b>non-digit</b> character to its <em>left</em>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return the resulting string after removing all digits.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">s = "abc"</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">"abc"</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>There is no digit in the string.<!-- notionvc: ff07e34f-b1d6-41fb-9f83-5d0ba3c1ecde --></p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">s = "cb34"</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">""</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>First, we apply the operation on <code>s[2]</code>, and <code>s</code> becomes <code>"c4"</code>.</p>
|
||||
|
||||
<p>Then we apply the operation on <code>s[1]</code>, and <code>s</code> becomes <code>""</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= s.length <= 100</code></li>
|
||||
<li><code>s</code> consists only of lowercase English letters and digits.</li>
|
||||
<li>The input is generated such that it is possible to delete all digits.</li>
|
||||
</ul>
|
@ -0,0 +1,88 @@
|
||||
<p>You are given an integer <code>n</code> and a 2D array <code>requirements</code>, where <code>requirements[i] = [end<sub>i</sub>, cnt<sub>i</sub>]</code> represents the end index and the <strong>inversion</strong> count of each requirement.</p>
|
||||
|
||||
<p>A pair of indices <code>(i, j)</code> from an integer array <code>nums</code> is called an <strong>inversion</strong> if:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>i < j</code> and <code>nums[i] > nums[j]</code></li>
|
||||
</ul>
|
||||
|
||||
<p>Return the number of <span data-keyword="permutation">permutations</span> <code>perm</code> of <code>[0, 1, 2, ..., n - 1]</code> such that for <strong>all</strong> <code>requirements[i]</code>, <code>perm[0..end<sub>i</sub>]</code> has exactly <code>cnt<sub>i</sub></code> inversions.</p>
|
||||
|
||||
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 3, requirements = [[2,2],[0,0]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The two permutations are:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>[2, 0, 1]</code>
|
||||
|
||||
<ul>
|
||||
<li>Prefix <code>[2, 0, 1]</code> has inversions <code>(0, 1)</code> and <code>(0, 2)</code>.</li>
|
||||
<li>Prefix <code>[2]</code> has 0 inversions.</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><code>[1, 2, 0]</code>
|
||||
<ul>
|
||||
<li>Prefix <code>[1, 2, 0]</code> has inversions <code>(0, 2)</code> and <code>(1, 2)</code>.</li>
|
||||
<li>Prefix <code>[1]</code> has 0 inversions.</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 3, requirements = [[2,2],[1,1],[0,0]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> 1</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The only satisfying permutation is <code>[2, 0, 1]</code>:</p>
|
||||
|
||||
<ul>
|
||||
<li>Prefix <code>[2, 0, 1]</code> has inversions <code>(0, 1)</code> and <code>(0, 2)</code>.</li>
|
||||
<li>Prefix <code>[2, 0]</code> has an inversion <code>(0, 1)</code>.</li>
|
||||
<li>Prefix <code>[2]</code> has 0 inversions.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 2, requirements = [[0,0],[1,0]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">1</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The only satisfying permutation is <code>[0, 1]</code>:</p>
|
||||
|
||||
<ul>
|
||||
<li>Prefix <code>[0]</code> has 0 inversions.</li>
|
||||
<li>Prefix <code>[0, 1]</code> has an inversion <code>(0, 1)</code>.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= n <= 300</code></li>
|
||||
<li><code>1 <= requirements.length <= n</code></li>
|
||||
<li><code>requirements[i] = [end<sub>i</sub>, cnt<sub>i</sub>]</code></li>
|
||||
<li><code>0 <= end<sub>i</sub> <= n - 1</code></li>
|
||||
<li><code>0 <= cnt<sub>i</sub> <= 400</code></li>
|
||||
<li>The input is generated such that there is at least one <code>i</code> such that <code>end<sub>i</sub> == n - 1</code>.</li>
|
||||
<li>The input is generated such that all <code>end<sub>i</sub></code> are unique.</li>
|
||||
</ul>
|
Loading…
Reference in New Issue
Block a user