1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-03 14:32:54 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
This commit is contained in:
2023-09-01 19:42:45 +08:00
parent 3a7fe98f11
commit 9eb643f137
28 changed files with 16946 additions and 13994 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,67 @@
{
"data": {
"question": {
"questionId": "3097",
"questionFrontendId": "2837",
"boundTopicId": null,
"title": "Total Traveled Distance",
"titleSlug": "total-traveled-distance",
"content": null,
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": true,
"difficulty": "Easy",
"likes": 6,
"dislikes": 2,
"isLiked": null,
"similarQuestions": "[]",
"exampleTestcases": "{\"headers\":{\"Users\":[\"user_id\",\"name\"],\"Rides\":[\"ride_id\",\"user_id\",\"distance\"]},\"rows\":{\"Users\":[[17,\"Addison\"],[14,\"Ethan\"],[4,\"Michael\"],[2,\"Avery\"],[10,\"Eleanor\"]],\"Rides\":[[72,17,160],[42,14,161],[45,4,59],[32,2,197],[15,4,357],[56,2,196],[10,14,25]]}}",
"categoryTitle": "Database",
"contributors": [],
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": null,
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": null,
"stats": "{\"totalAccepted\": \"215\", \"totalSubmission\": \"270\", \"totalAcceptedRaw\": 215, \"totalSubmissionRaw\": 270, \"acRate\": \"79.6%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"Users\":[\"user_id\",\"name\"],\"Rides\":[\"ride_id\",\"user_id\",\"distance\"]},\"rows\":{\"Users\":[[17,\"Addison\"],[14,\"Ethan\"],[4,\"Michael\"],[2,\"Avery\"],[10,\"Eleanor\"]],\"Rides\":[[72,17,160],[42,14,161],[45,4,59],[32,2,197],[15,4,357],[56,2,196],[10,14,25]]}}",
"metaData": "{\"mysql\": [\"Create table if not exists Users(user_id int, name varchar(30))\", \"Create table if not exists Rides(ride_id int,user_id int, distance int)\"], \"mssql\": [\"Create table Users(user_id int, name varchar(30))\", \"Create table Rides(ride_id int,user_id int, distance int)\"], \"oraclesql\": [\"Create table Users(user_id int, name varchar(30))\", \"Create table Rides(ride_id int,user_id int, distance int)\"], \"database\": true, \"name\": \"get_total_distance\", \"pythondata\": [\"Users = pd.DataFrame([], columns=['user_id', 'name']).astype({'user_id':'Int64', 'name':'object'})\", \"Rides = pd.DataFrame([], columns=['ride_id', 'user_id', 'distance']).astype({'ride_id':'Int64', 'user_id':'Int64', 'distance':'Int64'})\"], \"database_schema\": {\"Users\": {\"user_id\": \"INT\", \"name\": \"VARCHAR(30)\"}, \"Rides\": {\"ride_id\": \"INT\", \"user_id\": \"INT\", \"distance\": \"INT\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table if not exists Users(user_id int, name varchar(30))",
"Create table if not exists Rides(ride_id int,user_id int, distance int)",
"Truncate table Users",
"insert into Users (user_id, name) values ('17', 'Addison')",
"insert into Users (user_id, name) values ('14', 'Ethan')",
"insert into Users (user_id, name) values ('4', 'Michael')",
"insert into Users (user_id, name) values ('2', 'Avery')",
"insert into Users (user_id, name) values ('10', 'Eleanor')",
"Truncate table Rides",
"insert into Rides (ride_id, user_id, distance) values ('72', '17', '160')",
"insert into Rides (ride_id, user_id, distance) values ('42', '14', '161')",
"insert into Rides (ride_id, user_id, distance) values ('45', '4', '59')",
"insert into Rides (ride_id, user_id, distance) values ('32', '2', '197')",
"insert into Rides (ride_id, user_id, distance) values ('15', '4', '357')",
"insert into Rides (ride_id, user_id, distance) values ('56', '2', '196')",
"insert into Rides (ride_id, user_id, distance) values ('10', '14', '25')"
],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": false,
"envInfo": "{\"mysql\": [\"MySQL\", \"<p><code>MySQL 8.0</code>.</p>\"], \"mssql\": [\"MS SQL Server\", \"<p><code>mssql server 2019</code>.</p>\"], \"oraclesql\": [\"Oracle\", \"<p><code>Oracle Sql 11.2</code>.</p>\"], \"pythondata\": [\"Pandas\", \"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0</p>\"]}",
"libraryUrl": null,
"adminUrl": null,
"challengeQuestion": null,
"__typename": "QuestionNode"
}
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,52 @@
<p>You are given positive integers <code>n</code> and <code>target</code>.</p>
<p>An array <code>nums</code> is <strong>beautiful</strong> if it meets the following conditions:</p>
<ul>
<li><code>nums.length == n</code>.</li>
<li><code>nums</code> consists of pairwise <strong>distinct</strong> <strong>positive</strong> integers.</li>
<li>There doesn&#39;t exist two <strong>distinct</strong> indices, <code>i</code> and <code>j</code>, in the range <code>[0, n - 1]</code>, such that <code>nums[i] + nums[j] == target</code>.</li>
</ul>
<p>Return <em>the <strong>minimum</strong> possible sum that a beautiful array could have</em>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2, target = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> We can see that nums = [1,3] is beautiful.
- The array nums has length n = 2.
- The array nums consists of pairwise distinct positive integers.
- There doesn&#39;t exist two distinct indices, i and j, with nums[i] + nums[j] == 3.
It can be proven that 4 is the minimum possible sum that a beautiful array could have.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, target = 3
<strong>Output:</strong> 8
<strong>Explanation:</strong> We can see that nums = [1,3,4] is beautiful.
- The array nums has length n = 3.
- The array nums consists of pairwise distinct positive integers.
- There doesn&#39;t exist two distinct indices, i and j, with nums[i] + nums[j] == 3.
It can be proven that 8 is the minimum possible sum that a beautiful array could have.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 1, target = 1
<strong>Output:</strong> 1
<strong>Explanation:</strong> We can see, that nums = [1] is beautiful.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= target &lt;= 10<sup>5</sup></code></li>
</ul>

View File

@@ -0,0 +1,43 @@
<p>You are given a string <code>moves</code> of length <code>n</code> consisting only of characters <code>&#39;L&#39;</code>, <code>&#39;R&#39;</code>, and <code>&#39;_&#39;</code>. The string represents your movement on a number line starting from the origin <code>0</code>.</p>
<p>In the <code>i<sup>th</sup></code> move, you can choose one of the following directions:</p>
<ul>
<li>move to the left if <code>moves[i] = &#39;L&#39;</code> or <code>moves[i] = &#39;_&#39;</code></li>
<li>move to the right if <code>moves[i] = &#39;R&#39;</code> or <code>moves[i] = &#39;_&#39;</code></li>
</ul>
<p>Return <em>the <strong>distance from the origin</strong> of the <strong>furthest</strong> point you can get to after </em><code>n</code><em> moves</em>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> moves = &quot;L_RL__R&quot;
<strong>Output:</strong> 3
<strong>Explanation:</strong> The furthest point we can reach from the origin 0 is point -3 through the following sequence of moves &quot;LLRLLLR&quot;.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> moves = &quot;_R__LL_&quot;
<strong>Output:</strong> 5
<strong>Explanation:</strong> The furthest point we can reach from the origin 0 is point -5 through the following sequence of moves &quot;LRLLLLL&quot;.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> moves = &quot;_______&quot;
<strong>Output:</strong> 7
<strong>Explanation:</strong> The furthest point we can reach from the origin 0 is point 7 through the following sequence of moves &quot;RRRRRRR&quot;.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= moves.length == n &lt;= 50</code></li>
<li><code>moves</code> consists only of characters <code>&#39;L&#39;</code>, <code>&#39;R&#39;</code> and <code>&#39;_&#39;</code>.</li>
</ul>

View File

@@ -0,0 +1,121 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>receiver</code> of length <code>n</code> and an integer <code>k</code>.</p>
<p>There are <code>n</code> players having a <strong>unique id</strong> in the range <code>[0, n - 1]</code> who will play a ball passing game, and <code>receiver[i]</code> is the id of the player who receives passes from the player with id <code>i</code>. Players can pass to themselves, <strong>i.e.</strong> <code>receiver[i]</code> may be equal to <code>i</code>.</p>
<p>You must choose one of the <code>n</code> players as the starting player for the game, and the ball will be passed <strong>exactly</strong> <code>k</code> times starting from the chosen player.</p>
<p>For a chosen starting player having id <code>x</code>, we define a function <code>f(x)</code> that denotes the <strong>sum</strong> of <code>x</code> and the <strong>ids</strong> of all players who receive the ball during the <code>k</code> passes, <strong>including repetitions</strong>. In other words, <code>f(x) = x + receiver[x] + receiver[receiver[x]] + ... + receiver<sup>(k)</sup>[x]</code>.</p>
<p>Your task is to choose a starting player having id <code>x</code> that <strong>maximizes</strong> the value of <code>f(x)</code>.</p>
<p>Return <em>an integer denoting the <strong>maximum</strong> value of the function.</em></p>
<p><strong>Note:</strong> <code>receiver</code> may contain duplicates.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
<tbody>
<tr>
<th style="padding: 5px; border: 1px solid black;">Pass Number</th>
<th style="padding: 5px; border: 1px solid black;">Sender ID</th>
<th style="padding: 5px; border: 1px solid black;">Receiver ID</th>
<th style="padding: 5px; border: 1px solid black;">x + Receiver IDs</th>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">&nbsp;</td>
<td style="padding: 5px; border: 1px solid black;">&nbsp;</td>
<td style="padding: 5px; border: 1px solid black;">&nbsp;</td>
<td style="padding: 5px; border: 1px solid black;">2</td>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">1</td>
<td style="padding: 5px; border: 1px solid black;">2</td>
<td style="padding: 5px; border: 1px solid black;">1</td>
<td style="padding: 5px; border: 1px solid black;">3</td>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">2</td>
<td style="padding: 5px; border: 1px solid black;">1</td>
<td style="padding: 5px; border: 1px solid black;">0</td>
<td style="padding: 5px; border: 1px solid black;">3</td>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">3</td>
<td style="padding: 5px; border: 1px solid black;">0</td>
<td style="padding: 5px; border: 1px solid black;">2</td>
<td style="padding: 5px; border: 1px solid black;">5</td>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">4</td>
<td style="padding: 5px; border: 1px solid black;">2</td>
<td style="padding: 5px; border: 1px solid black;">1</td>
<td style="padding: 5px; border: 1px solid black;">6</td>
</tr>
</tbody>
</table>
<pre>
<strong>Input:</strong> receiver = [2,0,1], k = 4
<strong>Output:</strong> 6
<strong>Explanation:</strong> The table above shows a simulation of the game starting with the player having id x = 2.
From the table, f(2) is equal to 6.
It can be shown that 6 is the maximum achievable value of the function.
Hence, the output is 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
<tbody>
<tr>
<th style="padding: 5px; border: 1px solid black;">Pass Number</th>
<th style="padding: 5px; border: 1px solid black;">Sender ID</th>
<th style="padding: 5px; border: 1px solid black;">Receiver ID</th>
<th style="padding: 5px; border: 1px solid black;">x + Receiver IDs</th>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">&nbsp;</td>
<td style="padding: 5px; border: 1px solid black;">&nbsp;</td>
<td style="padding: 5px; border: 1px solid black;">&nbsp;</td>
<td style="padding: 5px; border: 1px solid black;">4</td>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">1</td>
<td style="padding: 5px; border: 1px solid black;">4</td>
<td style="padding: 5px; border: 1px solid black;">3</td>
<td style="padding: 5px; border: 1px solid black;">7</td>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">2</td>
<td style="padding: 5px; border: 1px solid black;">3</td>
<td style="padding: 5px; border: 1px solid black;">2</td>
<td style="padding: 5px; border: 1px solid black;">9</td>
</tr>
<tr>
<td style="padding: 5px; border: 1px solid black;">3</td>
<td style="padding: 5px; border: 1px solid black;">2</td>
<td style="padding: 5px; border: 1px solid black;">1</td>
<td style="padding: 5px; border: 1px solid black;">10</td>
</tr>
</tbody>
</table>
<pre>
<strong>Input:</strong> receiver = [1,1,1,2,3], k = 3
<strong>Output:</strong> 10
<strong>Explanation:</strong> The table above shows a simulation of the game starting with the player having id x = 4.
From the table, f(4) is equal to 10.
It can be shown that 10 is the maximum achievable value of the function.
Hence, the output is 10.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= receiver.length == n &lt;= 10<sup>5</sup></code></li>
<li><code>0 &lt;= receiver[i] &lt;= n - 1</code></li>
<li><code>1 &lt;= k &lt;= 10<sup>10</sup></code></li>
</ul>

View File

@@ -0,0 +1,52 @@
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> consisting of <strong>non-negative</strong> powers of <code>2</code>, and an integer <code>target</code>.</p>
<p>In one operation, you must apply the following changes to the array:</p>
<ul>
<li>Choose any element of the array <code>nums[i]</code> such that <code>nums[i] &gt; 1</code>.</li>
<li>Remove <code>nums[i]</code> from the array.</li>
<li>Add <strong>two</strong> occurrences of <code>nums[i] / 2</code> to the <strong>end</strong> of <code>nums</code>.</li>
</ul>
<p>Return the <em><strong>minimum number of operations</strong> you need to perform so that </em><code>nums</code><em> contains a <strong>subsequence</strong> whose elements sum to</em> <code>target</code>. If it is impossible to obtain such a subsequence, return <code>-1</code>.</p>
<p>A <strong>subsequence</strong> is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,8], target = 7
<strong>Output:</strong> 1
<strong>Explanation:</strong> In the first operation, we choose element nums[2]. The array becomes equal to nums = [1,2,4,4].
At this stage, nums contains the subsequence [1,2,4] which sums up to 7.
It can be shown that there is no shorter sequence of operations that results in a subsequnce that sums up to 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,32,1,2], target = 12
<strong>Output:</strong> 2
<strong>Explanation:</strong> In the first operation, we choose element nums[1]. The array becomes equal to nums = [1,1,2,16,16].
In the second operation, we choose element nums[3]. The array becomes equal to nums = [1,1,2,16,8,8]
At this stage, nums contains the subsequence [1,1,2,8] which sums up to 12.
It can be shown that there is no shorter sequence of operations that results in a subsequence that sums up to 12.</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,32,1], target = 35
<strong>Output:</strong> -1
<strong>Explanation:</strong> It can be shown that no sequence of operations results in a subsequence that sums up to 35.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 1000</code></li>
<li><code>1 &lt;= nums[i] &lt;= 2<sup>30</sup></code></li>
<li><code>nums</code> consists only of non-negative powers of two.</li>
<li><code>1 &lt;= target &lt; 2<sup>31</sup></code></li>
</ul>