mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-12-17 17:52:34 +08:00
update
This commit is contained in:
55
leetcode-cn/originData/reshape-data-melt.json
Normal file
55
leetcode-cn/originData/reshape-data-melt.json
Normal file
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3073",
|
||||
"questionFrontendId": "100014",
|
||||
"categoryTitle": "Algorithms",
|
||||
"boundTopicId": 2467495,
|
||||
"title": "Reshape Data: Melt",
|
||||
"titleSlug": "reshape-data-melt",
|
||||
"content": "<pre>\nDataFrame <code>report</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| product | object |\n| quarter_1 | int |\n| quarter_2 | int |\n| quarter_3 | int |\n| quarter_4 | int |\n+-------------+--------+\n</pre>\n\n<p>Write a solution to <strong>reshape</strong> the data so that each row represents sales data for a product in a specific quarter.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:\n</strong>+-------------+-----------+-----------+-----------+-----------+\n| product | quarter_1 | quarter_2 | quarter_3 | quarter_4 |\n+-------------+-----------+-----------+-----------+-----------+\n| Umbrella | 417 | 224 | 379 | 611 |\n| SleepingBag | 800 | 936 | 93 | 875 |\n+-------------+-----------+-----------+-----------+-----------+\n<strong>Output:</strong>\n+-------------+-----------+-------+\n| product | quarter | sales |\n+-------------+-----------+-------+\n| Umbrella | quarter_1 | 417 |\n| SleepingBag | quarter_1 | 800 |\n| Umbrella | quarter_2 | 224 |\n| SleepingBag | quarter_2 | 936 |\n| Umbrella | quarter_3 | 379 |\n| SleepingBag | quarter_3 | 93 |\n| Umbrella | quarter_4 | 611 |\n| SleepingBag | quarter_4 | 875 |\n+-------------+-----------+-------+\n<strong>Explanation:</strong>\nThe DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter.\n</pre>\n",
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": false,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": [
|
||||
{
|
||||
"lang": "Pandas",
|
||||
"langSlug": "pythondata",
|
||||
"code": "import pandas as pd\n\ndef meltTable(report: pd.DataFrame) -> pd.DataFrame:\n ",
|
||||
"__typename": "CodeSnippetNode"
|
||||
}
|
||||
],
|
||||
"stats": "{\"totalAccepted\": \"12\", \"totalSubmission\": \"13\", \"totalAcceptedRaw\": 12, \"totalSubmissionRaw\": 13, \"acRate\": \"92.3%\"}",
|
||||
"hints": [
|
||||
"Consider using a built-in function in pandas library to transform the data"
|
||||
],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}",
|
||||
"metaData": "{\n \"pythondata\": [\n \"report = pd.DataFrame([], columns=['product', 'quarter_1', 'quarter_2', 'quarter_3', 'quarter_4']).astype({'product':'object', 'quarter_1':'Int64', 'quarter_2':'Int64', 'quarter_3':'Int64', 'quarter_4':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"meltTable\",\n \"languages\": [\n \"pythondata\"\n ]\n}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user