1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
This commit is contained in:
程序员小墨 2022-09-10 23:46:34 +08:00
parent 96aa5b0ba0
commit 8f6be18759
23 changed files with 9568 additions and 7445 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,58 @@
<p>给你一个整数 <code>n</code> ,共有编号从 <code>0</code><code>n - 1</code><code>n</code> 个会议室。</p>
<p>给你一个二维整数数组 <code>meetings</code> ,其中 <code>meetings[i] = [start<sub>i</sub>, end<sub>i</sub>]</code> 表示一场会议将会在 <strong>半闭</strong> 时间区间 <code>[start<sub>i</sub>, end<sub>i</sub>)</code> 举办。所有 <code>start<sub>i</sub></code> 的值 <strong>互不相同</strong></p>
<p>会议将会按以下方式分配给会议室:</p>
<ol>
<li>每场会议都会在未占用且编号 <strong>最小</strong> 的会议室举办。</li>
<li>如果没有可用的会议室,会议将会延期,直到存在空闲的会议室。延期会议的持续时间和原会议持续时间 <strong>相同</strong></li>
<li>当会议室处于未占用状态时,将会优先提供给原 <strong>开始</strong> 时间更早的会议。</li>
</ol>
<p>返回举办最多次会议的房间 <strong>编号</strong> 。如果存在多个房间满足此条件,则返回编号 <strong>最小</strong> 的房间。</p>
<p><strong>半闭区间 </strong><code>[a, b)</code><code>a</code><code>b</code> 之间的区间,<strong>包括</strong> <code>a</code><strong> 不包括</strong> <code>b</code></p>
<p>&nbsp;</p>
<p><strong>示例 1</strong></p>
<pre><strong>输入:</strong>n = 2, meetings = [[0,10],[1,5],[2,7],[3,4]]
<strong>输出:</strong>0
<strong>解释:</strong>
- 在时间 0 ,两个会议室都未占用,第一场会议在会议室 0 举办。
- 在时间 1 ,只有会议室 1 未占用,第二场会议在会议室 1 举办。
- 在时间 2 ,两个会议室都被占用,第三场会议延期举办。
- 在时间 3 ,两个会议室都被占用,第四场会议延期举办。
- 在时间 5 ,会议室 1 的会议结束。第三场会议在会议室 1 举办,时间周期为 [5,10) 。
- 在时间 10 ,两个会议室的会议都结束。第四场会议在会议室 0 举办,时间周期为 [10,11) 。
会议室 0 和会议室 1 都举办了 2 场会议,所以返回 0 。
</pre>
<p><strong>示例 2</strong></p>
<pre><strong>输入:</strong>n = 3, meetings = [[1,20],[2,10],[3,5],[4,9],[6,8]]
<strong>输出:</strong>1
<strong>解释:</strong>
- 在时间 1 ,所有三个会议室都未占用,第一场会议在会议室 0 举办。
- 在时间 2 ,会议室 1 和 2 未占用,第二场会议在会议室 1 举办。
- 在时间 3 ,只有会议室 2 未占用,第三场会议在会议室 2 举办。
- 在时间 4 ,所有三个会议室都被占用,第四场会议延期举办。
- 在时间 5 ,会议室 2 的会议结束。第四场会议在会议室 2 举办,时间周期为 [5,10) 。
- 在时间 6 ,所有三个会议室都被占用,第五场会议延期举办。
- 在时间 10 ,会议室 1 和 2 的会议结束。第五场会议在会议室 1 举办,时间周期为 [10,12) 。
会议室 1 和会议室 2 都举办了 2 场会议,所以返回 1 。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 100</code></li>
<li><code>1 &lt;= meetings.length &lt;= 10<sup>5</sup></code></li>
<li><code>meetings[i].length == 2</code></li>
<li><code>0 &lt;= start<sub>i</sub> &lt; end<sub>i</sub> &lt;= 5 * 10<sup>5</sup></code></li>
<li><code>start<sub>i</sub></code> 的所有值 <strong>互不相同</strong></li>
</ul>

View File

@ -0,0 +1,33 @@
<p>给你两个 <strong></strong> 整数 <code>startPos</code><code>endPos</code> 。最初,你站在 <strong>无限</strong> 数轴上位置 <code>startPos</code> 处。在一步移动中,你可以向左或者向右移动一个位置。</p>
<p>给你一个正整数 <code>k</code> ,返回从 <code>startPos</code> 出发、<strong>恰好</strong> 移动 <code>k</code> 步并到达 <code>endPos</code><strong>不同</strong> 方法数目。由于答案可能会很大,返回对 <code>10<sup>9</sup> + 7</code> <strong>取余</strong> 的结果。</p>
<p>如果所执行移动的顺序不完全相同,则认为两种方法不同。</p>
<p><strong>注意:</strong>数轴包含负整数<strong></strong></p>
<p>&nbsp;</p>
<p><strong>示例 1</strong></p>
<pre><strong>输入:</strong>startPos = 1, endPos = 2, k = 3
<strong>输出:</strong>3
<strong>解释:</strong>存在 3 种从 1 到 2 且恰好移动 3 步的方法:
- 1 -&gt; 2 -&gt; 3 -&gt; 2.
- 1 -&gt; 2 -&gt; 1 -&gt; 2.
- 1 -&gt; 0 -&gt; 1 -&gt; 2.
可以证明不存在其他方法,所以返回 3 。</pre>
<p><strong>示例 2</strong></p>
<pre><strong>输入:</strong>startPos = 2, endPos = 5, k = 10
<strong>输出:</strong>0
<strong>解释:</strong>不存在从 2 到 5 且恰好移动 10 步的方法。</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= startPos, endPos, k &lt;= 1000</code></li>
</ul>

View File

@ -0,0 +1,37 @@
<p>给你一个由 <strong></strong> 整数组成的数组 <code>nums</code></p>
<p>如果&nbsp;<code>nums</code> 的子数组中位于 <strong>不同</strong> 位置的每对元素按位 <strong>AND</strong>运算的结果等于 <code>0</code> ,则称该子数组为 <strong>优雅</strong> 子数组。</p>
<p>返回 <strong>最长</strong> 的优雅子数组的长度。</p>
<p><strong>子数组</strong> 是数组中的一个 <strong>连续</strong> 部分。</p>
<p><strong>注意:</strong>长度为 <code>1</code> 的子数组始终视作优雅子数组。</p>
<p>&nbsp;</p>
<p><strong>示例 1</strong></p>
<pre><strong>输入:</strong>nums = [1,3,8,48,10]
<strong>输出:</strong>3
<strong>解释:</strong>最长的优雅子数组是 [3,8,48] 。子数组满足题目条件:
- 3 AND 8 = 0
- 3 AND 48 = 0
- 8 AND 48 = 0
可以证明不存在更长的优雅子数组,所以返回 3 。</pre>
<p><strong>示例 2</strong></p>
<pre><strong>输入:</strong>nums = [3,1,5,11,13]
<strong>输出:</strong>1
<strong>解释:</strong>最长的优雅子数组长度为 1 ,任何长度为 1 的子数组都满足题目条件。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,42 @@
<p>给你一个下标从 <strong>0</strong> 开始的字符串 <code>s</code> ,该字符串仅由小写英文字母组成,<code>s</code> 中的每个字母都 <strong>恰好</strong> 出现 <strong>两次</strong> 。另给你一个下标从 <strong>0</strong> 开始、长度为 <code>26</code> 的的整数数组 <code>distance</code></p>
<p>字母表中的每个字母按从 <code>0</code><code>25</code> 依次编号(即,<code>'a' -&gt; 0</code>, <code>'b' -&gt; 1</code>, <code>'c' -&gt; 2</code>, ... , <code>'z' -&gt; 25</code>)。</p>
<p>在一个 <strong>匀整</strong> 字符串中,第 <code>i</code> 个字母的两次出现之间的字母数量是 <code>distance[i]</code> 。如果第 <code>i</code> 个字母没有在 <code>s</code> 中出现,那么 <code>distance[i]</code> 可以 <strong>忽略</strong></p>
<p>如果 <code>s</code> 是一个 <strong>匀整</strong> 字符串,返回 <code>true</code> ;否则,返回 <code>false</code></p>
<p>&nbsp;</p>
<p><strong>示例 1</strong></p>
<pre><strong>输入:</strong>s = "abaccb", distance = [1,3,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
<strong>输出:</strong>true
<strong>解释:</strong>
- 'a' 在下标 0 和下标 2 处出现,所以满足 distance[0] = 1 。
- 'b' 在下标 1 和下标 5 处出现,所以满足 distance[1] = 3 。
- 'c' 在下标 3 和下标 4 处出现,所以满足 distance[2] = 0 。
注意 distance[3] = 5 ,但是由于 'd' 没有在 s 中出现,可以忽略。
因为 s 是一个匀整字符串,返回 true 。
</pre>
<p><strong>示例 2</strong></p>
<pre><strong>输入:</strong>s = "aa", distance = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
<strong>输出:</strong>false
<strong>解释:</strong>
- 'a' 在下标 0 和 1 处出现,所以两次出现之间的字母数量为 0 。
但是 distance[0] = 1 s 不是一个匀整字符串。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>2 &lt;= s.length &lt;= 52</code></li>
<li><code>s</code> 仅由小写英文字母组成</li>
<li><code>s</code> 中的每个字母恰好出现两次</li>
<li><code>distance.length == 26</code></li>
<li><code>0 &lt;= distance[i] &lt;= 50</code></li>
</ul>

View File

@ -0,0 +1,58 @@
<p>You are given an integer <code>n</code>. There are <code>n</code> rooms numbered from <code>0</code> to <code>n - 1</code>.</p>
<p>You are given a 2D integer array <code>meetings</code> where <code>meetings[i] = [start<sub>i</sub>, end<sub>i</sub>]</code> means that a meeting will be held during the <strong>half-closed</strong> time interval <code>[start<sub>i</sub>, end<sub>i</sub>)</code>. All the values of <code>start<sub>i</sub></code> are <strong>unique</strong>.</p>
<p>Meetings are allocated to rooms in the following manner:</p>
<ol>
<li>Each meeting will take place in the unused room with the <strong>lowest</strong> number.</li>
<li>If there are no available rooms, the meeting will be delayed until a room becomes free. The delayed meeting should have the <strong>same</strong> duration as the original meeting.</li>
<li>When a room becomes unused, meetings that have an earlier original <strong>start</strong> time should be given the room.</li>
</ol>
<p>Return<em> the <strong>number</strong> of the room that held the most meetings. </em>If there are multiple rooms, return<em> the room with the <strong>lowest</strong> number.</em></p>
<p>A <strong>half-closed interval</strong> <code>[a, b)</code> is the interval between <code>a</code> and <code>b</code> <strong>including</strong> <code>a</code> and <strong>not including</strong> <code>b</code>.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2, meetings = [[0,10],[1,5],[2,7],[3,4]]
<strong>Output:</strong> 0
<strong>Explanation:</strong>
- At time 0, both rooms are not being used. The first meeting starts in room 0.
- At time 1, only room 1 is not being used. The second meeting starts in room 1.
- At time 2, both rooms are being used. The third meeting is delayed.
- At time 3, both rooms are being used. The fourth meeting is delayed.
- At time 5, the meeting in room 1 finishes. The third meeting starts in room 1 for the time period [5,10).
- At time 10, the meetings in both rooms finish. The fourth meeting starts in room 0 for the time period [10,11).
Both rooms 0 and 1 held 2 meetings, so we return 0.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, meetings = [[1,20],[2,10],[3,5],[4,9],[6,8]]
<strong>Output:</strong> 1
<strong>Explanation:</strong>
- At time 1, all three rooms are not being used. The first meeting starts in room 0.
- At time 2, rooms 1 and 2 are not being used. The second meeting starts in room 1.
- At time 3, only room 2 is not being used. The third meeting starts in room 2.
- At time 4, all three rooms are being used. The fourth meeting is delayed.
- At time 5, the meeting in room 2 finishes. The fourth meeting starts in room 2 for the time period [5,10).
- At time 6, all three rooms are being used. The fifth meeting is delayed.
- At time 10, the meetings in rooms 1 and 2 finish. The fifth meeting starts in room 1 for the time period [10,12).
Room 0 held 1 meeting while rooms 1 and 2 each held 2 meetings, so we return 1.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 100</code></li>
<li><code>1 &lt;= meetings.length &lt;= 10<sup>5</sup></code></li>
<li><code>meetings[i].length == 2</code></li>
<li><code>0 &lt;= start<sub>i</sub> &lt; end<sub>i</sub> &lt;= 5 * 10<sup>5</sup></code></li>
<li>All the values of <code>start<sub>i</sub></code> are <strong>unique</strong>.</li>
</ul>

View File

@ -0,0 +1,34 @@
<p>You are given two <strong>positive</strong> integers <code>startPos</code> and <code>endPos</code>. Initially, you are standing at position <code>startPos</code> on an <strong>infinite</strong> number line. With one step, you can move either one position to the left, or one position to the right.</p>
<p>Given a positive integer <code>k</code>, return <em>the number of <strong>different</strong> ways to reach the position </em><code>endPos</code><em> starting from </em><code>startPos</code><em>, such that you perform <strong>exactly</strong> </em><code>k</code><em> steps</em>. Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p>Two ways are considered different if the order of the steps made is not exactly the same.</p>
<p><strong>Note</strong> that the number line includes negative integers.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> startPos = 1, endPos = 2, k = 3
<strong>Output:</strong> 3
<strong>Explanation:</strong> We can reach position 2 from 1 in exactly 3 steps in three ways:
- 1 -&gt; 2 -&gt; 3 -&gt; 2.
- 1 -&gt; 2 -&gt; 1 -&gt; 2.
- 1 -&gt; 0 -&gt; 1 -&gt; 2.
It can be proven that no other way is possible, so we return 3.</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> startPos = 2, endPos = 5, k = 10
<strong>Output:</strong> 0
<strong>Explanation:</strong> It is impossible to reach position 5 from position 2 in exactly 10 steps.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= startPos, endPos, k &lt;= 1000</code></li>
</ul>

View File

@ -0,0 +1,37 @@
<p>You are given an array <code>nums</code> consisting of <strong>positive</strong> integers.</p>
<p>We call a subarray of <code>nums</code> <strong>nice</strong> if the bitwise <strong>AND</strong> of every pair of elements that are in <strong>different</strong> positions in the subarray is equal to <code>0</code>.</p>
<p>Return <em>the length of the <strong>longest</strong> nice subarray</em>.</p>
<p>A <strong>subarray</strong> is a <strong>contiguous</strong> part of an array.</p>
<p><strong>Note</strong> that subarrays of length <code>1</code> are always considered nice.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,8,48,10]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The longest nice subarray is [3,8,48]. This subarray satisfies the conditions:
- 3 AND 8 = 0.
- 3 AND 48 = 0.
- 8 AND 48 = 0.
It can be proven that no longer nice subarray can be obtained, so we return 3.</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,1,5,11,13]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The length of the longest nice subarray is 1. Any subarray of length 1 can be chosen.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,42 @@
<p>You are given a <strong>0-indexed</strong> string <code>s</code> consisting of only lowercase English letters, where each letter in <code>s</code> appears <strong>exactly</strong> <strong>twice</strong>. You are also given a <strong>0-indexed</strong> integer array <code>distance</code> of length <code>26</code>.</p>
<p>Each letter in the alphabet is numbered from <code>0</code> to <code>25</code> (i.e. <code>&#39;a&#39; -&gt; 0</code>, <code>&#39;b&#39; -&gt; 1</code>, <code>&#39;c&#39; -&gt; 2</code>, ... , <code>&#39;z&#39; -&gt; 25</code>).</p>
<p>In a <strong>well-spaced</strong> string, the number of letters between the two occurrences of the <code>i<sup>th</sup></code> letter is <code>distance[i]</code>. If the <code>i<sup>th</sup></code> letter does not appear in <code>s</code>, then <code>distance[i]</code> can be <strong>ignored</strong>.</p>
<p>Return <code>true</code><em> if </em><code>s</code><em> is a <strong>well-spaced</strong> string, otherwise return </em><code>false</code>.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = &quot;abaccb&quot;, distance = [1,3,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
<strong>Output:</strong> true
<strong>Explanation:</strong>
- &#39;a&#39; appears at indices 0 and 2 so it satisfies distance[0] = 1.
- &#39;b&#39; appears at indices 1 and 5 so it satisfies distance[1] = 3.
- &#39;c&#39; appears at indices 3 and 4 so it satisfies distance[2] = 0.
Note that distance[3] = 5, but since &#39;d&#39; does not appear in s, it can be ignored.
Return true because s is a well-spaced string.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = &quot;aa&quot;, distance = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
<strong>Output:</strong> false
<strong>Explanation:</strong>
- &#39;a&#39; appears at indices 0 and 1 so there are zero letters between them.
Because distance[0] = 1, s is not a well-spaced string.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 &lt;= s.length &lt;= 52</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
<li>Each letter appears in <code>s</code> exactly twice.</li>
<li><code>distance.length == 26</code></li>
<li><code>0 &lt;= distance[i] &lt;= 50</code></li>
</ul>

View File

@ -12,7 +12,7 @@ def get_proble_set(url):
try: try:
response = requests.get(url, headers = { response = requests.get(url, headers = {
'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.41 Safari/537.36 Edg/101.0.1210.32" 'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.41 Safari/537.36 Edg/101.0.1210.32"
}) }, verify=False)
if response.status_code == 200: if response.status_code == 200:
return response.text return response.text
return None return None

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,42 @@
<p>You are given a <strong>0-indexed</strong> string <code>s</code> consisting of only lowercase English letters, where each letter in <code>s</code> appears <strong>exactly</strong> <strong>twice</strong>. You are also given a <strong>0-indexed</strong> integer array <code>distance</code> of length <code>26</code>.</p>
<p>Each letter in the alphabet is numbered from <code>0</code> to <code>25</code> (i.e. <code>&#39;a&#39; -&gt; 0</code>, <code>&#39;b&#39; -&gt; 1</code>, <code>&#39;c&#39; -&gt; 2</code>, ... , <code>&#39;z&#39; -&gt; 25</code>).</p>
<p>In a <strong>well-spaced</strong> string, the number of letters between the two occurrences of the <code>i<sup>th</sup></code> letter is <code>distance[i]</code>. If the <code>i<sup>th</sup></code> letter does not appear in <code>s</code>, then <code>distance[i]</code> can be <strong>ignored</strong>.</p>
<p>Return <code>true</code><em> if </em><code>s</code><em> is a <strong>well-spaced</strong> string, otherwise return </em><code>false</code>.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = &quot;abaccb&quot;, distance = [1,3,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
<strong>Output:</strong> true
<strong>Explanation:</strong>
- &#39;a&#39; appears at indices 0 and 2 so it satisfies distance[0] = 1.
- &#39;b&#39; appears at indices 1 and 5 so it satisfies distance[1] = 3.
- &#39;c&#39; appears at indices 3 and 4 so it satisfies distance[2] = 0.
Note that distance[3] = 5, but since &#39;d&#39; does not appear in s, it can be ignored.
Return true because s is a well-spaced string.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = &quot;aa&quot;, distance = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
<strong>Output:</strong> false
<strong>Explanation:</strong>
- &#39;a&#39; appears at indices 0 and 1 so there are zero letters between them.
Because distance[0] = 1, s is not a well-spaced string.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 &lt;= s.length &lt;= 52</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
<li>Each letter appears in <code>s</code> exactly twice.</li>
<li><code>distance.length == 26</code></li>
<li><code>0 &lt;= distance[i] &lt;= 50</code></li>
</ul>

View File

@ -0,0 +1,45 @@
<p>You are given an integer array <code>coins</code> representing coins of different denominations and an integer <code>amount</code> representing a total amount of money.</p>
<p>Return <em>the number of combinations that make up that amount</em>. If that amount of money cannot be made up by any combination of the coins, return <code>0</code>.</p>
<p>You may assume that you have an infinite number of each kind of coin.</p>
<p>The answer is <strong>guaranteed</strong> to fit into a signed <strong>32-bit</strong> integer.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> amount = 5, coins = [1,2,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> amount = 3, coins = [2]
<strong>Output:</strong> 0
<strong>Explanation:</strong> the amount of 3 cannot be made up just with coins of 2.
</pre>
<p><strong>Example 3:</strong></p>
<pre>
<strong>Input:</strong> amount = 10, coins = [10]
<strong>Output:</strong> 1
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= coins.length &lt;= 300</code></li>
<li><code>1 &lt;= coins[i] &lt;= 5000</code></li>
<li>All the values of <code>coins</code> are <strong>unique</strong>.</li>
<li><code>0 &lt;= amount &lt;= 5000</code></li>
</ul>

View File

@ -0,0 +1,39 @@
<p>Given a <strong>0-indexed</strong> integer array <code>nums</code>, determine whether there exist <strong>two</strong> subarrays of length <code>2</code> with <strong>equal</strong> sum. Note that the two subarrays must begin at <strong>different</strong> indices.</p>
<p>Return <code>true</code><em> if these subarrays exist, and </em><code>false</code><em> otherwise.</em></p>
<p>A <b>subarray</b> is a contiguous non-empty sequence of elements within an array.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [4,2,4]
<strong>Output:</strong> true
<strong>Explanation:</strong> The subarrays with elements [4,2] and [2,4] have the same sum of 6.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> false
<strong>Explanation:</strong> No two subarrays of size 2 have the same sum.
</pre>
<p><strong>Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,0,0]
<strong>Output:</strong> true
<strong>Explanation:</strong> The subarrays [nums[0],nums[1]] and [nums[1],nums[2]] have the same sum of 0.
Note that even though the subarrays have the same content, the two subarrays are considered different because they are in different positions in the original array.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 &lt;= nums.length &lt;= 1000</code></li>
<li><code>-10<sup>9</sup> &lt;= nums[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,35 @@
<p>You have <code>n</code> robots. You are given two <strong>0-indexed</strong> integer arrays, <code>chargeTimes</code> and <code>runningCosts</code>, both of length <code>n</code>. The <code>i<sup>th</sup></code> robot costs <code>chargeTimes[i]</code> units to charge and costs <code>runningCosts[i]</code> units to run. You are also given an integer <code>budget</code>.</p>
<p>The <strong>total cost</strong> of running <code>k</code> chosen robots is equal to <code>max(chargeTimes) + k * sum(runningCosts)</code>, where <code>max(chargeTimes)</code> is the largest charge cost among the <code>k</code> robots and <code>sum(runningCosts)</code> is the sum of running costs among the <code>k</code> robots.</p>
<p>Return<em> the <strong>maximum</strong> number of <strong>consecutive</strong> robots you can run such that the total cost <strong>does not</strong> exceed </em><code>budget</code>.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> chargeTimes = [3,6,1,3,4], runningCosts = [2,1,3,4,5], budget = 25
<strong>Output:</strong> 3
<strong>Explanation:</strong>
It is possible to run all individual and consecutive pairs of robots within budget.
To obtain answer 3, consider the first 3 robots. The total cost will be max(3,6,1) + 3 * sum(2,1,3) = 6 + 3 * 6 = 24 which is less than 25.
It can be shown that it is not possible to run more than 3 consecutive robots within budget, so we return 3.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> chargeTimes = [11,12,19], runningCosts = [10,8,7], budget = 19
<strong>Output:</strong> 0
<strong>Explanation:</strong> No robot can be run that does not exceed the budget, so we return 0.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>chargeTimes.length == runningCosts.length == n</code></li>
<li><code>1 &lt;= n &lt;= 5 * 10<sup>4</sup></code></li>
<li><code>1 &lt;= chargeTimes[i], runningCosts[i] &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= budget &lt;= 10<sup>15</sup></code></li>
</ul>