1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-12 02:41:42 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee

批量更新数据

This commit is contained in:
2025-01-09 20:29:41 +08:00
parent 04ecea043d
commit 48cdd06c2b
5053 changed files with 156164 additions and 135322 deletions

View File

@@ -1,28 +1,38 @@
<p>Alice and Bob continue their&nbsp;games with piles of stones.&nbsp; There are a number of&nbsp;piles&nbsp;<strong>arranged in a row</strong>, and each pile has a positive integer number of stones&nbsp;<code>piles[i]</code>.&nbsp; The objective of the game is to end with the most&nbsp;stones.&nbsp;</p>
<p>Alice and Bob continue their games with piles of stones. There are a number of piles <strong>arranged in a row</strong>, and each pile has a positive integer number of stones <code>piles[i]</code>. The objective of the game is to end with the most stones.</p>
<p>Alice&nbsp;and Bob take turns, with Alice starting first.&nbsp; Initially, <code>M = 1</code>.</p>
<p>Alice and Bob take turns, with Alice starting first.</p>
<p>On each player&#39;s turn, that player&nbsp;can take <strong>all the stones</strong> in the <strong>first</strong> <code>X</code> remaining piles, where <code>1 &lt;= X &lt;= 2M</code>.&nbsp; Then, we set&nbsp;<code>M = max(M, X)</code>.</p>
<p>On each player&#39;s turn, that player can take <strong>all the stones</strong> in the <strong>first</strong> <code>X</code> remaining piles, where <code>1 &lt;= X &lt;= 2M</code>. Then, we set <code>M = max(M, X)</code>. Initially, M = 1.</p>
<p>The game continues until all the stones have been taken.</p>
<p>Assuming Alice and Bob play optimally, return the maximum number of stones Alice&nbsp;can get.</p>
<p>Assuming Alice and Bob play optimally, return the maximum number of stones Alice can get.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> piles = [2,7,9,4,4]
<strong>Output:</strong> 10
<strong>Explanation:</strong> If Alice takes one pile at the beginning, Bob takes two piles, then Alice takes 2 piles again. Alice can get 2 + 4 + 4 = 10 piles in total. If Alice takes two piles at the beginning, then Bob can take all three piles left. In this case, Alice get 2 + 7 = 9 piles in total. So we return 10 since it&#39;s larger.
</pre>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">piles = [2,7,9,4,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<ul>
<li>If Alice takes one pile at the beginning, Bob takes two piles, then Alice takes 2 piles again. Alice can get <code>2 + 4 + 4 = 10</code> stones in total.</li>
<li>If Alice takes two piles at the beginning, then Bob can take all three piles left. In this case, Alice get <code>2 + 7 = 9</code> stones in total.</li>
</ul>
<p>So we return 10 since it&#39;s larger.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> piles = [1,2,3,4,5,100]
<strong>Output:</strong> 104
</pre>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">piles = [1,2,3,4,5,100]</span></p>
<p><strong>Output:</strong> <span class="example-io">104</span></p>
</div>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>